Title goes here Building a superconducting quantum computer with the surface code Matteo Mariantoni Fall INTRIQ meeting, November 5 th & 6 th 2013.

Slides:



Advertisements
Similar presentations
Topological Subsystem Codes with Local Gauge Group Generators Martin Suchara in collaboration with: Sergey Bravyi and Barbara Terhal December 08, 2010.
Advertisements

Q U RE: T HE Q UANTUM R ESOURCE E STIMATOR T OOLBOX Martin Suchara (IBM Research) October 9, 2013 In collaboration with: Arvin Faruque, Ching-Yi Lai, Gerardo.
Demonstration of conditional gate operation using superconducting charge qubits T. Yamamoto, Yu. A. Pashkin, O. Astafiev, Y. Nakamura & J. S. Tsai Presented.
The Toffoli gate & Error Correction
Three-qubit quantum error correction with superconducting circuits
SPEC, CEA Saclay (France),
What’s QEC to Solid State Physics David DiVincenzo QEC14.
Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
Quantum Computing Uf H Nick Bonesteel
Quantum computing hardware.
Superinductor with Tunable Non-Linearity M.E. Gershenson M.T. Bell, I.A. Sadovskyy, L.B. Ioffe, and A.Yu. Kitaev * Department of Physics and Astronomy,
Scaling up a Josephson Junction Quantum Computer Basic elements of quantum computer have been demonstrated 4-5 qubit algorithms within reach 8-10 likely.
High fidelity Josephson phase qubits winning the war (battle…) on decoherence “Quantum Integrated Circuit” – scalable Fidelity b reakthrough: single-shot.
D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM A.M. Zagoskin (D-Wave Systems and UBC) Tunable coupling of superconducting qubits Quantum Mechanics.
Experimental quantum information processing - the of the art Nadav Katz A biased progress report Contact: Quantum computation.
Electrons on Liquid Helium
Quantum Error Correction SOURCES: Michele Mosca Daniel Gottesman Richard Spillman Andrew Landahl.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Encoded Universality – an Overview Julia Kempe University of California, Berkeley Department of Chemistry & Computer Science Division Sponsors:
Quantum Oracles Jesse Dhillon, Ben Schmid, & Lin Xu CS/Phys C191 Final Project December 1, 2005.
Local Fault-tolerant Quantum Computation Krysta Svore Columbia University FTQC 29 August 2005 Collaborators: Barbara Terhal and David DiVincenzo, IBM quant-ph/
Quantum Computing with Superconducting Circuits Rob Schoelkopf Yale Applied Physics QIS Workshop, Virginia April 23, 2009.
Quantum computing hardware aka Experimental Aspects of Quantum Computation PHYS 576.
Error-correcting the IBM qubit error-correcting the IBM qubit panos aliferis IBM.
Quantum Error Correction: Andrew Landahl David Gottesman Dr. Wu And others.
Autonomous Quantum Error Correction Joachim Cohen QUANTIC.
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Physics is becoming too difficult for physicists. — David Hilbert (mathematician)
Paraty - II Quantum Information Workshop 11/09/2009 Fault-Tolerant Computing with Biased-Noise Superconducting Qubits Frederico Brito Collaborators: P.
Production and detection of few-qubit entanglement in circuit-QED processors Leo DiCarlo (in place of Rob Schoelkopf) Department of Applied Physics, Yale.
Quantum systems for information technology, ETHZ
Matt Reed Yale University Boston, MA - February 28, 2012
SPEC, CEA Saclay (France),
Quantum Optics with Electrical Circuits: ‘Circuit QED’
M.T. Bell et al., Quantum Superinductor with Tunable Non-Linearity, Phys. Rev. Lett. 109, (2012). Many Josephson circuits intended for quantum computing.
Towards practical classical processing for the surface code arXiv: Austin G. Fowler, Adam C. Whiteside, Lloyd C. L. Hollenberg Centre for Quantum.
Quantum Computing Preethika Kumar
Implementation of Quantum Computing Ethan Brown Devin Harper With emphasis on the Kane quantum computer.
Quantum Control Synthesizing Robust Gates T. S. Mahesh
Meet the transmon and his friends
1 hardware of quantum computer 1. quantum registers 2. quantum gates.
Global control, perpetual coupling and the like Easing the experimental burden Simon Benjamin, Oxford. EPSRC. DTI, Royal Soc.
Quantum Computing Reversibility & Quantum Computing.
© 2015 AT&T Intellectual Property. All rights reserved. AT&T, the AT&T logo and all other AT&T marks contained herein are trademarks of AT&T Intellectual.
Shor’s Factoring Algorithm
Quantum Computing: An Overview for non-specialists Mikio Nakahara Department of Physics & Research Centre for Quantum Computing Kinki University, Japan.
Large scale quantum computing in silicon with imprecise qubit couplings ArXiv : (2015)
Panos aliferis IBM Jan. 09 quantum computing hardware with highly biased noise.
F Matrix: F F F F F Pentagon Fusion rules: 1x1 = 0+1; 1x0 = 0x1 = 1; 0x0 = 0 Fibonacci anyon with topological “charge” 1.
Measuring Quantum Coherence in the Cooper-Pair Box
Mesoscopic Physics Introduction Prof. I.V.Krive lecture presentation Address: Svobody Sq. 4, 61022, Kharkiv, Ukraine, Rooms. 5-46, 7-36, Phone: +38(057)707.
Sources, Memories, Detectors Ryan Camacho, Curtis Broadbent, Michael Pack, Praveen Vudya Setu, Greg Armstrong, Benjamin Dixon and John Howell University.
Suggestion for Optical Implementation of Hadamard Gate Amir Feizpour Physics Department Sharif University of Technology.
Quantum Computing Are We There Yet?
Quantum Shift Register Circuits Mark M. Wilde arXiv: National Institute of Standards and Technology, Wednesday, June 10, 2009 To appear in Physical.
Superconducting Qubits
MIT: Education & Outreach
Outline Device & setup Initialization and read out
Ion Trap Quantum Computing and Teleportation
|  Introduction to Quantum Computation Bruce Kane
Optimal Interesting Quantum Gates with Quantum Dot Qubits David DiVincenzo Spinqubits summer school, Konstanz Hall Effect Gyrators and Circulators.
Leon Camenzind 11/08/17.
Using surface code experimental output correctly and effectively
MICRO-50 Swamit Tannu Zachary Myers Douglas Carmean Prashant Nair
Opening a Remote Quantum Gate
A near–quantum-limited Josephson traveling-wave parametric amplifier
Quantum Computing: the Majorana Fermion Solution
Quantum Computing Joseph Stelmach.
Entangling Atoms with Optical Frequency Combs
Dynamics of a superconducting qubit coupled to quantum two-level systems in its environment Robert Johansson (RIKEN, The Institute of Physical and Chemical.
Presentation transcript:

Title goes here Building a superconducting quantum computer with the surface code Matteo Mariantoni Fall INTRIQ meeting, November 5 th & 6 th 2013

the DQM lab team Thomas G. McConkey Doctoral Student John R. Rinehart Doctoral Student Carolyn “Cary” T. Earnest Doctoral Student Corey Rae H. McRae Doctoral Student Jérémy Béjanin Master’s Student Yousef Rohanizadegan Research Assistant Matteo Mariantoni Principal Investigator Daryoush Shiri Postdoctoral Fellow Collaborators: 1)Prof. Michael J. Hartmann Heriot Watt University 2)Prof. Frederick W. Strauch Williams College 3)Prof. Adrian Lupaşcu IQC 4)Prof. Christopher M. Wilson IQC 5)Prof. Zbig R. Wasilewski WIN 6)Dr. Austin G. Fowler UC Santa Barbara 7)Prof. David G. Cory IQC 8)Prof. Guo-Xing Miao IQC 9)Prof. Roger G. Melko UW 10)Sadegh Raeisi IQC 11)Yuval R. Sanders IQC

lab virtual walkthrough the lab is being setup in these very days; it will be up and running by February 2014 photo credit BlueFors Cryogenics Oy DR

lab real walkthrough the lab is being setup in these very days; it will be up and running by February 2014

nano/micro meterspace milli kelvintemperature giga hertz frequency time on the edge nano/micro meterspace photo credit – M. Mariantoni and E. Lucero University of California Santa Barbara

on the edge milli kelvintemperature photo credit – BlueFors Cryogenics Oy

giga hertz frequency time on the edge photo credit – M. Mariantoni and E. Lucero

LC resonator superconducting quantum circuits

LC resonator superconducting quantum circuits ~ 7 GHz

dielectric material transmission-line resonator superconducting quantum circuits

coplanar waveguide resonator superconducting quantum circuits T 1 ~ 5  s T 2 ~ 2T 1 M. Mariantoni et al., Nature Phys. 7, 287 (2011)

Josephson junction → nonlinearity qubit superconducting quantum circuits

~ 7 GHz ~ 6.8 GHz  an ~ 200 MHz superconducting quantum circuits qubit

superconducting quantum circuits qubit capacitor C inductor L junction T 1 ~ 500 ns T 2 ~ 150 ns M. Mariantoni et al., Nature Phys. 7, 287 (2011)

resonator + qubit superconducting quantum circuits resonator + qubit + control capacitor C inductor L junction X,Y ( ,  /2); Z g(C b ) ~ 100 MHz  10 ns M. Mariantoni et al., Nature Phys. 7, 287 (2011) A. Blais, R.-S. Huang, A. Wallraff, S.M. Girvin, and R.J. Schoelkopf, Phys. Rev. A 69, (2004); A. Wallraff et al., Nature (London) 431, 162 (2004)

one-qubit pulses and one-qubit quantum errors P.W. Shor, Phys. Rev. A 52, 2493 (1995)

Q1Q1 Q2Q2 M1M1 M2M2 B Z2Z2 Z1Z1 create, write, re-create, zero, read entanglement

i M. Mariantoni et al., Science 334, 61 (2011)

the CZ-  gate qubit qutrit

phase qubit qutrit the CZ-  gate

qutrit-resonator interaction the CZ-  gate

qutrit-resonator interaction the CZ-  gate

qutrit-resonator interaction the CZ-  gate

resonant semi-resonant qutrit-resonator interaction the CZ-  gate

resonant semi-resonant two-qubit CZ-  gate the CZ-  gate

resonant semi-resonant control target THEORY: F. W. Strauch et al., Phys. Rev. Lett. 91, (2003) G. Haack,…, M.M.,... et al., Phys. Rev. B 82, (2010) EXPERIMENT: L. DiCarlo et al., Nature (London) 460, (2009) T. Yamamoto,…, M.M.,... et al., Phys. Rev. B 82, (2010) two-qubit CZ-  gate the CZ-  gate

resonant semi-resonant CZ-  gate truth table control target the CZ-  gate

resonant semi-resonant two-qubit CZ-  gate the CZ-  gate

resonant semi-resonant two-qubit CZ-  gate the CZ-  gate M. Mariantoni et al., Science 334, 61 (2011)

resonant semi-resonant M. Mariantoni et al., Science 334, 61 (2011) two-qubit CZ-  gate the CZ-  gate

 -meter: Generalized Ramsey (a) the CZ-  gate

i.compensate dynamic phase ii.varying z cmp  Ramsey fringe  -meter: Generalized Ramsey (a) the CZ-  gate

 -meter: Generalized Ramsey (b) the CZ-  gate

 -meter: Generalized Ramsey (a-b) the CZ-  gate

 -meter: Generalized Ramsey (a-b) the CZ-  gate

 = 0.01  =  /2  =   -meter: Generalized Ramsey (a-b) the CZ-  gate

process tomography the CZ-  gate fidelity ~70% fidelity ~60% qubit T 1 ~500 ns, T 2 ~150 ns

superconducting surface code A.G. Fowler, M. Mariantoni, J.M. Martinis, and A.N. Cleland, Phys. Rev. A 86, (2012) ~ 50 pages of details

2D lattice with nearest neighbor interactions A.G. Fowler, M. Mariantoni, J.M. Martinis, and A.N. Cleland, Phys. Rev. A 86, (2012) ~ 50 pages of details

data and syndrome qubit syndrome → measured data surface code

face and vertex A.Yu. Kitaev, Annals of Physics 303, 2 (2003) surface code

Z-stabilizer stabilizers

Z-stabilizer  zeroing gate stabilizers

Z-stabilizer  projects stabilizers

X-stabilizer  projects stabilizers

one qubit  qubit state destroyed

stabilizers

quiescent state +1 stabilizers

+1 quiescent state stabilizers

quiescent state time quantum error detection

time  bit-flip error quantum error detection

 bit-flip error  phase-flip error time protected memory +1 1)any error 2)boundaries 3)measurement errors  “minimum weight matching” → polynomial +1 quantum error detection

error chains and logical qubits error on first qubit

error chains and logical qubits error on first qubit

error chains and logical qubits error on second qubit

error chains and logical qubits error on second qubit

error chains and logical qubits error on third qubit

error chains and logical qubits error on third qubit

error chains and logical qubits error on fourth qubit

+1 quiescent state error chains and logical qubits

error chains and logical qubits error on last qubit

error chains and logical qubits error on third qubit

error chains and logical qubits back to original quiescent state

fault tolerance – surface codes physical → logical qubit = error rate A.G. Fowler et al., Phys. Rev. A 86, (2012)

fault tolerance – surface codes physical qubits → logical qubit = error rate )nearest neighbor interactions 2)CNOT physical gates fast ~ 100 ns with F ≥ 99 % 3)readout fast ~ 100 ns with F ≥ 90 % 4)interface with classical electronics 5)overhead proof-of-concept → 3/5 physical qubits quantum memory → 10  10 = 10 2 physical qubits Shor → 10 3 to 10 4 physical qubits 

A. Megrant et al., App. Phys. Lett. 100, (2012) fault tolerance – surface codes 1) CNOT physical gates R. Barends et al., Phys. Rev. Lett. 111, (2013) Xmon Xmon lifetime T 1 ~ 50  s T gate ~ 50 ns = 0.05  s → F  exp(- T gate / T 1 ) = exp(  s / 50  s) ~ 99.9 % R. Barends et al., App. Phys. Lett. 99, (2011)

fault tolerance – surface codes physical qubits → logical qubit = error rate )nearest neighbor interactions 2)CNOT physical gates fast ~ 100 ns with F ≥ 99 % 3)readout fast ~ 100 ns with F ≥ 90 % 4)interface with classical electronics 5)overhead proof-of-concept → 3/5 physical qubits quantum memory → 10  10 = 10 2 physical qubits Shor → 10 3 to 10 4 physical qubits  

fault tolerance – surface codes 2) readout R. Vijay et al., Nature (London) 490, 77 (2012) readout time  r ~ 100 ns F > 90 %

fault tolerance – surface codes physical qubits → logical qubit = error rate )nearest neighbor interactions 2)CNOT physical gates fast ~ 100 ns with F ≥ 99 % 3)readout fast ~ 100 ns with F ≥ 90 % 4)interface with classical electronics 5)overhead proof-of-concept → 3/5 physical qubits quantum memory → 10  10 = 10 2 physical qubits Shor → 10 3 to 10 4 physical qubits    

surface code proof-of-concept → 3/5 physical qubits → 3-4 years quantum memory → 10 2 physical qubits → 8-9 years Shor to factor a 2000 bit number in 24 h with 1 nuclear power plant → 300  10 6 physical qubits oon the best classical super-cluster: many times the age of the universe and virtually infinite power perspective

resonator-qubit 2D lattice A,|g ⟩ unit cell B B Z R R R … … … … Q,|  ⟩

A,|g ⟩ B … … … …  higher isolation → OFF coupling B Q,|  ⟩ resonator-qubit 2D lattice

B B Q,|  ⟩ A,|g ⟩ R R R … … …  higher isolation → OFF coupling  encoding → multiple measurement resonator-qubit 2D lattice

Z … … …  higher isolation → OFF coupling  encoding → multiple measurement  zero Q,|  ⟩ leakage to third state resonator-qubit 2D lattice

see also D.P. DiVincenzo, Phys. Scr., T 137, (2009) A,|g ⟩ B B Z R R R … … …  higher isolation → OFF coupling  encoding → multiple measurement  zero and/or store Q,|  ⟩ resonator-qubit 2D lattice