Title goes here Building a superconducting quantum computer with the surface code Matteo Mariantoni Fall INTRIQ meeting, November 5 th & 6 th 2013
the DQM lab team Thomas G. McConkey Doctoral Student John R. Rinehart Doctoral Student Carolyn “Cary” T. Earnest Doctoral Student Corey Rae H. McRae Doctoral Student Jérémy Béjanin Master’s Student Yousef Rohanizadegan Research Assistant Matteo Mariantoni Principal Investigator Daryoush Shiri Postdoctoral Fellow Collaborators: 1)Prof. Michael J. Hartmann Heriot Watt University 2)Prof. Frederick W. Strauch Williams College 3)Prof. Adrian Lupaşcu IQC 4)Prof. Christopher M. Wilson IQC 5)Prof. Zbig R. Wasilewski WIN 6)Dr. Austin G. Fowler UC Santa Barbara 7)Prof. David G. Cory IQC 8)Prof. Guo-Xing Miao IQC 9)Prof. Roger G. Melko UW 10)Sadegh Raeisi IQC 11)Yuval R. Sanders IQC
lab virtual walkthrough the lab is being setup in these very days; it will be up and running by February 2014 photo credit BlueFors Cryogenics Oy DR
lab real walkthrough the lab is being setup in these very days; it will be up and running by February 2014
nano/micro meterspace milli kelvintemperature giga hertz frequency time on the edge nano/micro meterspace photo credit – M. Mariantoni and E. Lucero University of California Santa Barbara
on the edge milli kelvintemperature photo credit – BlueFors Cryogenics Oy
giga hertz frequency time on the edge photo credit – M. Mariantoni and E. Lucero
LC resonator superconducting quantum circuits
LC resonator superconducting quantum circuits ~ 7 GHz
dielectric material transmission-line resonator superconducting quantum circuits
coplanar waveguide resonator superconducting quantum circuits T 1 ~ 5 s T 2 ~ 2T 1 M. Mariantoni et al., Nature Phys. 7, 287 (2011)
Josephson junction → nonlinearity qubit superconducting quantum circuits
~ 7 GHz ~ 6.8 GHz an ~ 200 MHz superconducting quantum circuits qubit
superconducting quantum circuits qubit capacitor C inductor L junction T 1 ~ 500 ns T 2 ~ 150 ns M. Mariantoni et al., Nature Phys. 7, 287 (2011)
resonator + qubit superconducting quantum circuits resonator + qubit + control capacitor C inductor L junction X,Y ( , /2); Z g(C b ) ~ 100 MHz 10 ns M. Mariantoni et al., Nature Phys. 7, 287 (2011) A. Blais, R.-S. Huang, A. Wallraff, S.M. Girvin, and R.J. Schoelkopf, Phys. Rev. A 69, (2004); A. Wallraff et al., Nature (London) 431, 162 (2004)
one-qubit pulses and one-qubit quantum errors P.W. Shor, Phys. Rev. A 52, 2493 (1995)
Q1Q1 Q2Q2 M1M1 M2M2 B Z2Z2 Z1Z1 create, write, re-create, zero, read entanglement
i M. Mariantoni et al., Science 334, 61 (2011)
the CZ- gate qubit qutrit
phase qubit qutrit the CZ- gate
qutrit-resonator interaction the CZ- gate
qutrit-resonator interaction the CZ- gate
qutrit-resonator interaction the CZ- gate
resonant semi-resonant qutrit-resonator interaction the CZ- gate
resonant semi-resonant two-qubit CZ- gate the CZ- gate
resonant semi-resonant control target THEORY: F. W. Strauch et al., Phys. Rev. Lett. 91, (2003) G. Haack,…, M.M.,... et al., Phys. Rev. B 82, (2010) EXPERIMENT: L. DiCarlo et al., Nature (London) 460, (2009) T. Yamamoto,…, M.M.,... et al., Phys. Rev. B 82, (2010) two-qubit CZ- gate the CZ- gate
resonant semi-resonant CZ- gate truth table control target the CZ- gate
resonant semi-resonant two-qubit CZ- gate the CZ- gate
resonant semi-resonant two-qubit CZ- gate the CZ- gate M. Mariantoni et al., Science 334, 61 (2011)
resonant semi-resonant M. Mariantoni et al., Science 334, 61 (2011) two-qubit CZ- gate the CZ- gate
-meter: Generalized Ramsey (a) the CZ- gate
i.compensate dynamic phase ii.varying z cmp Ramsey fringe -meter: Generalized Ramsey (a) the CZ- gate
-meter: Generalized Ramsey (b) the CZ- gate
-meter: Generalized Ramsey (a-b) the CZ- gate
-meter: Generalized Ramsey (a-b) the CZ- gate
= 0.01 = /2 = -meter: Generalized Ramsey (a-b) the CZ- gate
process tomography the CZ- gate fidelity ~70% fidelity ~60% qubit T 1 ~500 ns, T 2 ~150 ns
superconducting surface code A.G. Fowler, M. Mariantoni, J.M. Martinis, and A.N. Cleland, Phys. Rev. A 86, (2012) ~ 50 pages of details
2D lattice with nearest neighbor interactions A.G. Fowler, M. Mariantoni, J.M. Martinis, and A.N. Cleland, Phys. Rev. A 86, (2012) ~ 50 pages of details
data and syndrome qubit syndrome → measured data surface code
face and vertex A.Yu. Kitaev, Annals of Physics 303, 2 (2003) surface code
Z-stabilizer stabilizers
Z-stabilizer zeroing gate stabilizers
Z-stabilizer projects stabilizers
X-stabilizer projects stabilizers
one qubit qubit state destroyed
stabilizers
quiescent state +1 stabilizers
+1 quiescent state stabilizers
quiescent state time quantum error detection
time bit-flip error quantum error detection
bit-flip error phase-flip error time protected memory +1 1)any error 2)boundaries 3)measurement errors “minimum weight matching” → polynomial +1 quantum error detection
error chains and logical qubits error on first qubit
error chains and logical qubits error on first qubit
error chains and logical qubits error on second qubit
error chains and logical qubits error on second qubit
error chains and logical qubits error on third qubit
error chains and logical qubits error on third qubit
error chains and logical qubits error on fourth qubit
+1 quiescent state error chains and logical qubits
error chains and logical qubits error on last qubit
error chains and logical qubits error on third qubit
error chains and logical qubits back to original quiescent state
fault tolerance – surface codes physical → logical qubit = error rate A.G. Fowler et al., Phys. Rev. A 86, (2012)
fault tolerance – surface codes physical qubits → logical qubit = error rate )nearest neighbor interactions 2)CNOT physical gates fast ~ 100 ns with F ≥ 99 % 3)readout fast ~ 100 ns with F ≥ 90 % 4)interface with classical electronics 5)overhead proof-of-concept → 3/5 physical qubits quantum memory → 10 10 = 10 2 physical qubits Shor → 10 3 to 10 4 physical qubits
A. Megrant et al., App. Phys. Lett. 100, (2012) fault tolerance – surface codes 1) CNOT physical gates R. Barends et al., Phys. Rev. Lett. 111, (2013) Xmon Xmon lifetime T 1 ~ 50 s T gate ~ 50 ns = 0.05 s → F exp(- T gate / T 1 ) = exp( s / 50 s) ~ 99.9 % R. Barends et al., App. Phys. Lett. 99, (2011)
fault tolerance – surface codes physical qubits → logical qubit = error rate )nearest neighbor interactions 2)CNOT physical gates fast ~ 100 ns with F ≥ 99 % 3)readout fast ~ 100 ns with F ≥ 90 % 4)interface with classical electronics 5)overhead proof-of-concept → 3/5 physical qubits quantum memory → 10 10 = 10 2 physical qubits Shor → 10 3 to 10 4 physical qubits
fault tolerance – surface codes 2) readout R. Vijay et al., Nature (London) 490, 77 (2012) readout time r ~ 100 ns F > 90 %
fault tolerance – surface codes physical qubits → logical qubit = error rate )nearest neighbor interactions 2)CNOT physical gates fast ~ 100 ns with F ≥ 99 % 3)readout fast ~ 100 ns with F ≥ 90 % 4)interface with classical electronics 5)overhead proof-of-concept → 3/5 physical qubits quantum memory → 10 10 = 10 2 physical qubits Shor → 10 3 to 10 4 physical qubits
surface code proof-of-concept → 3/5 physical qubits → 3-4 years quantum memory → 10 2 physical qubits → 8-9 years Shor to factor a 2000 bit number in 24 h with 1 nuclear power plant → 300 10 6 physical qubits oon the best classical super-cluster: many times the age of the universe and virtually infinite power perspective
resonator-qubit 2D lattice A,|g ⟩ unit cell B B Z R R R … … … … Q,| ⟩
A,|g ⟩ B … … … … higher isolation → OFF coupling B Q,| ⟩ resonator-qubit 2D lattice
B B Q,| ⟩ A,|g ⟩ R R R … … … higher isolation → OFF coupling encoding → multiple measurement resonator-qubit 2D lattice
Z … … … higher isolation → OFF coupling encoding → multiple measurement zero Q,| ⟩ leakage to third state resonator-qubit 2D lattice
see also D.P. DiVincenzo, Phys. Scr., T 137, (2009) A,|g ⟩ B B Z R R R … … … higher isolation → OFF coupling encoding → multiple measurement zero and/or store Q,| ⟩ resonator-qubit 2D lattice