The AGET chip Circuit overview, First data & Status

Slides:



Advertisements
Similar presentations
1 ACTAR meeting – Santiago March 2008 Requirements Features required not available in standard ASICs for HEP: Auto-triggerable. Large dynamic range. Low.
Advertisements

Local Trigger Control Unit prototype
Specific requirements for analog electronics of a high counting rate TRD Vasile Catanescu NIHAM - Bucharest CBM 10th Collaboration Meeting Sept 25 – 28,
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
A scalable DAQ system using the DRS4 sampling chip H.Friederich 1, G.Davatz 1, U.Hartmann 2, A.Howard 1, H.Meyer 1, D.Murer 1, S.Ritt 2, N.Schlumpf 2 1.
Front-end electronics for Time Projection Chamber I.Konorov Outlook:  TPC requirements  TPC readout options  Options for TPC FE chips  Prototype TPC.
MDT-ASD PRR C. Posch30-Aug-02 1 Specifications, Design and Performance   Specifications Functional Analog   Architecture Analog channel Programmable.
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
NA62 front end architecture and performance Jan Kaplon/Pierre Jarron.
14-5 January 2006 Luciano Musa / CERN – PH / ED General Purpose Charge Readout Chip Nikhef, 4-5 January 2006 Outline  Motivations and specifications 
Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology Jean-Francois Genat On behalf of Mircea Bogdan 1, Henry J. Frisch 1, Herve Grabas 3, Mary.
TOF Electronics Qi An Fast Electronics Lab, USTC Sept. 16~17, 2002.
Preliminary Design of Calorimeter Electronics Shudi Gu June 2002.
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
Readout ASIC for SiPM detector of the CTA new generation camera (ALPS) N.Fouque, R. Hermel, F. Mehrez, Sylvie Rosier-Lees LAPP (Laboratoire d’Annecy le.
P. Baron CEA IRFU/SEDI/LDEFACTAR WORKSHOP Bordeaux (CENBG) June 17, Functionality of AFTER+ chip applications & requirements At this time, AFTER+
P. Baron CEA IRFU/SEDI/LDEFACTAR Meeting Santiago de Compostela March 11, A review of AFTER+ chip Its expected requirements At this time, AFTER+
Features of the new Alibava firmware: 1. Universal for laboratory use (readout of stand-alone detector via USB interface) and for the telescope readout.
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
HINP32C Southern Illinois University Edwardsville VLSI Design Research Laboratory Washington University in Saint Louis Nuclear Reactions Group.
Development of the Readout ASIC for Muon Chambers E. Atkin, I. Bulbalkov, A. Voronin, V. Ivanov, P. Ivanov, E. Malankin, D. Normanov, V. Samsonov, V. Shumikhin,
March 9, 2005 HBD CDR Review 1 HBD Electronics Preamp/cable driver on the detector. –Specification –Schematics –Test result Rest of the electronics chain.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
Sensor testing and validation plans for Phase-1 and Ultimate IPHC_HFT 06/15/ LG1.
SPIROC update Felix Sefkow Most slides from Ludovic Raux HCAL main meeting April 18, 2007.
ILD/ECAL MEETING 2014, 東京大学, JAPAN
Click to edit Master subtitle style Presented By Mythreyi Nethi HINP16C.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
VMM Update Front End ASIC for the ATLAS Muon Upgrade V. Polychronakos BNL RD51 - V. Polychronakos, BNL10/15/131.
PArISROC Photomultiplier Array Integrated in Sige Read Out Chip Selma Conforti Frédéric Dulucq Christophe de La Taille Gisèle Martin-Chassard Wei
1 Second generation Front-end chip for H-Cal SiPM readout : SPIROC Réunion EUDET France – LAL – jeudi 5 avril 2007 M. Bouchel, F. Dulucq, J. Fleury, C.
June 13rd, 2008 HARDROC2. June 13rd, 2008 European DHCAL meeting, NSM 2 HaRDROC1 architecture Variable gain (6bits) current preamps (50ohm input) One.
Technical status of the Gossipo-3 : starting point for the design of the Timepix-2 March 10, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
Pixel structure in Timepix2 : practical limitations June 15, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
Design of the 64-channel ASIC: update DEI - Politecnico di Bari and INFN - Sezione di Bari Meeting INSIDE, December 18, 2014, Roma Outline  Proposed solution.
C.Beigbeder, D.Breton, M.El Berni, J.Maalmi, V.Tocut – LAL/In2p3/CNRS L.Leterrier, S. Drouet - LPC/In2p3/CNRS P. Vallerand - GANIL/CNRS/CEA SuperB -Collaboration.
CEA DSM Irfu IDeF-X HD Imaging Detector Front-end for X-ray with High Dynamic range Alicja Michalowska, CEA-IRFU 1 Journées VLSI June 2010.
ASAD Workshop Saclay (CEA Irfu) November 25, AGET circuit: Application Information actar.
The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT 1 INFN Sezione di Pavia I Pavia, Italy.
DAQ ACQUISITION FOR THE dE/dX DETECTOR
OMEGA3 & COOP The New Pixel Detector of WA97
STATUS OF SPIROC measurement
Front-end Electronic for a neutrino telescope : a new ASIC SCOTT
KLOE II Inner Tracker FEE
Journées VLSI-FPGA-PCB Juin 2010 Xiaochao Fang
Jinfan Chang Experimental Physics Center , IHEP Feb 18 , 2011
A General Purpose Charge Readout Chip for TPC Applications
LHC1 & COOP September 1995 Report
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
CTA-LST meeting February 2015
96-channel, 10-bit, 20 MSPS ADC board with Gb Ethernet optical output
R&D activity dedicated to the VFE of the Si-W Ecal
Chapter 13 Linear-Digital ICs
VLVNT08 Toulone April 2008 Low Power Multi-Dynamics Front-End Architecture for the OM of a Neutrino Underwater Telescope Domenico Lo Presti Istituto Nazionale.
Ongoing R&D in Orsay/Saclay on ps time measurement: a USB-powered 2-channel 3.2GS/s 12-bit digitizer D.Breton (LAL Orsay), E.Delagnes (CEA/IRFU) Séminaire.
Hellenic Open University
TDC at OMEGA I will talk about SPACIROC asic
A Fast Binary Front - End using a Novel Current-Mode Technique
Status of n-XYTER read-out chain at GSI
SPIROC Status : Last developments for SPIROC
TPC electronics Atsushi Taketani
X. Zhu1, 3, Z. Deng1, 3, A. Lan2, X. Sun2, Y. Liu1, 3, Y. Shao2
BESIII EMC electronics
Chis status report.
Stefan Ritt Paul Scherrer Institute, Switzerland
Presented by T. Suomijärvi
DARE180U New Analog IPs Laurent Berti AMICSA 2018, LEUVEN.
Preliminary design of the behavior level model of the chip
Presentation transcript:

The AGET chip Circuit overview, First data & Status

Outline Architecture & operation phases of the chip, The SCA readout mode, Charge Channel: linearity & resolution, Architecture of the Trigger, Some data: transfer function, threshold value, … Hit channel register: protocol of the write & read, Schedule (Asic submission).

AGET: Architecture AGET Slow Control. Power on reset. Test mode: Serial Interface Mode CK In Test CSA;CR;SCAin (N°1) Asic “Spy” Mode Readout SCA MANAGER SLOW CONTROL W / R TEST Power on Reset [+ indisc] AGET 512 cells SCA FILTER tpeak CSA 1 channel x72in ADC Charge range DAC Discri inhibit BUFFER x76 Hit register Σ 72 discri. SCAwrite Trigger pulse Slow Control. Power on reset. Test mode: calibration or test [channel/channel] functional [72 channels on one shot] Spy mode (cx 1). 12-bit ADC [ADS6422] Main features for AGET 72 Analog Channels: Analog part + Sampling Capacitor Array. Main features for the channel Input Current Polarity: positive or negative. CSA + PZC + Filter (semi-Gaussian order 2). [Possibility to bypass the CSA]. SCA: 512 analog memory cells [new!! + 1 for internal logical operation facility]. Auto Triggering: discriminator + threshold (DAC) + inhibition. Main features for the readout Trigger[ Analog OR of the 72 discri. ] & SCA analog data => Same ADC channel. 4 SCA readout modes. Address of the hit channel(s) [read & write].

AGET: Mode of operation Asic management SCA read: READ & CKread SCA write: Write & CKwrite Slow control: Din, Dout, CK, CS Test: Pulser (Iinj or Vinj) Analog Data Conversion (Trigger & CSA analog data) ADC & Pulser: AsAD card AGET 512 cells SCA FILTER tpeak CSA 1 channel x72in 76 Charge range DAC BUFFER SCA MANAGER SLOW CONTROL TEST W CKw R CKr Din CK Dout Cs Iinj Vinj Discri inhibit Hit register Σ 72 discri. SCAwrite Trigger pulse Discri_in Discri_out Hit_channel Trigger_out Write_SCA Read_Address_hit channel Data_ADC_in Read_SCA Data_SCA_out SCA_in Channel i Stop Sampling: on external or local Trigger SCA write address read SCA read CSA_in Trigger SCA data

AGET: SCA Analog Memory: 72 channels + 4 dummy channels [for common mode or Fix pattern noise rejection purpose]. Write: 1MHz to 100MHz Read: 25MHz SCA Manager SCA write 76 lines 512 cells SCA read Clk write Clk read R In Bufferout W CLKwrite CLKread Write Read Write phase Read phase c0 c511 c510 ci-2 c1 c. ci ci-1 ci+1 ci+2 Peaking Time: 100ns SCA: circular memory Results obtained on AFTER chip

AGET: SCA Read Phase Channel Readout mode : all channels; hit channels or specific channels Read_SCA CKR_SCA Data_SCA_out 9xTrck 61xTrck Address of the last Column read Column n+511 address Vlow Vreset Column n 3xTrck 76xTrck C0 C1 C75 510x3xTrck + 510x76xTrck Column n+1 lumn n+511 Column n c0 c511 c510 ci-2 c1 c. ci ci-1 ci+1 ci+2 Channel 0 Readout Time: 512x [n channel + 3]xTrck + 79xTrck = 64.6 µs + 20.48 µsxnchannel [Trck = 40 ns] . n = 1 channel => Readout time = 85.08 µs. . n = 10 channels => Readout time = 269.4 µs. . n = 36 channels => Readout time = 801 µs. . n = 76 channels => Readout time = 1.621 ms. c0 c511 c510 ci-2 c1 c. ci ci-1 ci+1 ci+2 Channel 2 c0 c511 c510 ci-2 c1 c. ci ci-1 ci+1 ci+2 Channel n c0 c511 c510 ci-2 c1 c. ci ci-1 ci+1 ci+2 Channel 75

AGET: SCA Read Phase SCA readout mode: 512, 256 or 128 analog memory cells / channel 512 analog memory cells / channel: Write phase Stop (trigger) ci+1 Write phase: Tdrift ≤ 512 / Fsampling Read phase: SCAcells = 512 511 ci Readout phase 256 analog memory cells / channel: Write phase Stop (trigger) Write phase: 2 x Tdrift ≤ 512 / Fsampling Read phase: SCAcells = 256 511 ci Readout phase Internal Logical Operation 128 analog memory cells / channel: Write phase Stop (trigger) Write phase: 4 x Tdrift ≤ 512 / Fsampling Read phase: SCAcells = 128 511 Readout phase

pole zero cancellation AGET: Charge Channel SCA level: 3 Charge ranges; 2 bits register / channel: 120 fC or 1 pC or 10 pC or CSA standby[+ PZC filter]. PZC level: zero: 50 µs; Pole: 25ns to 500ns. RC2 level: Pole: 25 ns to 500 ns. Bypass: bypass: [CSA+PZC] or [CSA+PZC+RC2]; 2 bits global register + individual standby CSA. Peaking Time: 50ns to 1µs in Cl Cdet Cg2 + - 2*Cg2 Gain-2 RHV vdc Cs Sallen&Key Filter 16 values Cg 2*Cg pole zero cancellation Cp Rp standby s3 s4 s5 Slow Control Register [channel level] Decoding s0 2 s1 s2 [Asic level] Enable CSA Cf0 Rf0 Cf1 Rf1 Cf2 Rf2 Cf0: 100 fF Cf1: 1 pF Cf2: 10 pF VCSAoutput: 1V Cp: 1.8 pF Rp: 28 MΩ Cs: 1 pF Rs: 25 kΩ to 500 kΩ

AGET: Charge Channel Some numbers: Simulation results I.N.L: Charge range: 10pC; Peaking time: 50ns & 100ns; Input signal polarity.

AGET: Charge Channel Some numbers: Simulation results Charge resolution: versus input capacitor and peaking time

AGET: Charge Channel Some numbers: Simulation results Charge resolution: versus input capacitor and peaking time

AGET: Charge Channel Some numbers: Simulation results Charge resolution: versus input capacitor and peaking time

AGET: Charge Channel Some numbers: Simulation results Peaking Time: twhm Tpeak5%100% Tpeak100%5% Some numbers: Simulation results Peaking Time:

AGET: Trigger channel Discriminator Architecture: L.E.D Threshold value: Tunable; Global DAC [3 bits + polarity bit] + individual DAC [4 bits] 3-bit DAC 4-bit Discri + - Sign Polarity Signal over threshold Gain Common to all channels Slow Control Register [channel level] 4 inhibit FILTER CSA PZC G2 512 cells SCA Input Dynamic range: 5 % of channel input charge range Peaking Time: 50 ns to 1 µs [same filter than charge channel]

AGET: Trigger channel Some numbers: Simulation results Threshold value: Tunable; Global DAC [3 bits + polarity bit] + individual DAC [4 bits] Charge Range 120fC 1pC 10pC DAC lsb 293 eV 2.7KeV 27KeV Maximum threshold value 37KeV 343KeV 3.43MeV

AGET: Trigger channel Some numbers: Simulation results Minimum Threshold value: 120fC range

AGET: Trigger channel Some numbers: Simulation results Minimum Threshold value: 1pC range

AGET: Trigger channel Some numbers: Simulation results Minimum Threshold value: 10pC range

AGET: Trigger channel Trigger Architecture: Analog sum of the 72 discriminator outputs => Multiplicity Phase: synchronous of the ckADC signal & active during SCA writing phase Width: 2 x T ckADC (80ns) Dead Time [to avoid ringing]: any, fixed value (4µs +/- 1.5µs) or hit-channel register discri threshold Vin + - disc_out Set Q Reset width Memory In Synchro & Width (2*TSCAckread) Channel (4µs) veto trigger Hit-channel register 4µs Slow control Itrigger x 72 Current Voltage SCA_write ADC BUFFER ckADC SCA_read SCA_data AGET 1 Discri_in Disc_out Memory veto ckADC trigger width

AGET: Trigger channel Trigger signal: Transfer function: 20.5mV / hit channel at +/- 6% [ 42 ADC lsb at +/- 2 ] ADC input dynamic range Resolution: Hit channel number Noise 0.68 lsb 1 16 0.70 lsb 72 0.72 lsb

AGET: Trigger channel Trigger signal: Rise Time (1%_99%): 18ns Fall Time (99%_1%): 19ns One hit channel 72 hit channels

AGET: Hit channel register Phase: Discriminator output [rising edge of the Time over threshold signal] Width: 1 complete SCA sampling time < Width < 2 complete SCA sampling time Multiple hit event: Yes (2) [the width will be extended to 1 complete SCA sampling time] Discri_in Disc_out hit1 hit2 SCAcell0 Hit_channel SCA_write SCA_read 512*TSCAwck 1 event 2 events SCA read phase

AGET: Hit channel register Hit channel register & selective channels read out Concept: To keep the same pin in / pin out of the chip [no additional signals] Idea: To re-use the slow control link in a “fast” mode [25 MHz] X 1 XXXXX Sc_din Sc_ck Sc_en Sc_dout 72xTck SCA_read Read operation SCA_write Hit channel register <71 :0> This solution must be validated by: AsAd, CoBo and MUTANT idle X Sc_din Sc_ck Sc_en Sc_dout 72xTck XXXXX SCA_read Write operation SCA_write Read channel address <0 :71>

AGET: Requirements Parameter Value Polarity of detector signal Negative or Positive Number of channels 72 External Preamplifier Yes; access to the filter or SCA inputs Charge measurement Input dynamic range 120 fC; 1 pC; 10 pC Gain Adjustable/(channel) Output dynamic range 2V p-p I.N.L < 2% Resolution < 850 e- (Charge range: 120fC; Peaking Time: 200ns; Cinchannel. < 30pF) Sampling Peaking time value 50 ns to 1 µs (16 values) Number of SCA Time bins 512 [new] Sampling Frequency 1 MHz to 100 MHz Time resolution Jitter 60 ps rms Skew < 700 ps rms Trigger Discriminator solution L.E.D Trigger Output/Multiplicity OR of the 72 discriminator outputs (pulse of 2*TckADC) Dynamic range 5% of input charge range < 5% Threshold value 4-bit DAC/channel + (3-bit + polarity bit) common DAC Minimum threshold value ≥ noise Readout Readout frequency 20 MHz to 25 MHz Channel Readout mode Hit channel; specific channels; all channels SCA Readout mode 512 cells; 256 cells; 128 cells Test calibration 1 channel / 72; external test capacitor test 1 channel / 72; internal test capacitor (1/charge range) functional 1, few or 76 channels; internal test capacitor/channel Counting rate < 1 kHz Power consumption < 10 mW / channel

AGET: Schedule Remaining Job: AMS technology run schedule: Hit channel register: read & write protocol SCA readout: global schematic AGET: global schematic [channel level; all the chip] AGET: global layout AMS technology run schedule: 29 May / 20 July / 14 September / 7 December 2009