Pan-STARRS observational requirements specification.

Slides:



Advertisements
Similar presentations
Advanced CCD Workshop Arne A. Henden
Advertisements

Observational techniques meeting #5. Future surveys Narrow (pencil beam): HDF UDF GOODs Cosmos MCT JWST.
HST WFC3 IR channel: 1k x 1k HgCdTe detector, QE 80% 18 micron pixels (0.13”/pix), ~2’x2’ FOV Detector sensitivity engineered to cut off above 1.7 micron,
ELT Stellar Populations Science Near IR photometry and spectroscopy of resolved stars in nearby galaxies provides a way to extract their entire star formation.
R. Pain9/18/2008 LSST-SNAP complementarity Reynald Pain IN2P3/LPNHE Paris, France Page 1.
Sept. 18, 2008SLUO 2008 Annual Meeting Science Opportunities with LSST David L. Burke SLAC/KIPAC.
The Transient Universe: AY 250 Spring 2007 Extra Solar Planets Geoff Bower.
TOPS 2003 Remote Obs 1 Karen Meech Institute for Astronomy TOPS 2003 Image copyright, R. Wainscoat, IfA Image courtesy K. Meech.
Barry E. Burke Title Slide.
Detector Mosaic Design Considerations for a Wide FOV Drift-Scan Survey Telescope John T. McGraw Mark R. Ackermann Peter C. Zimmer University of New Mexico.
VISTA pipelines summit pipeline: real time DQC verified raw product to Garching standard pipeline: instrumental signature removal, catalogue production,
Pan-STARRS Seminar: IPPEugene Magnier Pan-STARRS Image Processing Pipeline Astrometry and Photometry IFA Pan-STARRS Seminar 735 October 14, 2004.
LIM: Near IR from a mini-satellite Dani Maoz. HST WFC3 IR channel: 1k x 1k HgCdTe detector, QE 80% 18 micron pixels (0.13”/pix), ~2’x2’ FOV Detector.
Pan-STARRS and TGBN Paul Price Institute for Astronomy University of Hawaii.
MMT Magellan Infrared Spectrograph ( MMIRS ) P.I. Brian McLeod Warren R. Brown SAO/CfA.
Pan-STARRS PY2 EOC Review #2 3 August 2004 U NIVERSITY OF H AWAII I NSTITUTE FOR A STRONOMY Approved for Public Release - Distribution is Unlimited 1 Astro.
The Catalina Sky Survey Eric J. Christensen A.Boattini, A. R. Gibbs, A. D. Grauer, R. E. Hill, J. A. Johnson, R. A. Kowalski, S. M. Larson, F. C. Shelly.
Agile: A Time-Series CCD Photometer to Study Variables Anjum Mukadam, Russell Owen, Ed Mannery University of Washington, Seattle.
Digital Correlated Double Sampling for ZTF Roger Smith and Stephen Kaye California Institute of Technology The digital equivalent of dual slope integration.
Naoyuki Tamura (University of Durham) Expected Performance of FMOS ~ Estimation with Spectrum Simulator ~ Introduction of simulators  Examples of calculations.
AAO Fibre Instrument Data Simulator 10 October 2011 ROE Workshop 2011 Michael Goodwin Tony Farrell Gayandhi De Silva Scott Smedley Australian Astronomical.
Science Impact of Sensor Effects or How well do we need to understand our CCDs? Tony Tyson.
National Center for Supercomputing Applications Observational Astronomy NCSA projects radio astronomy: CARMA & SKA optical astronomy: DES & LSST access:
Inter-University Centre for Astronomy and Astrophysics Pune, India. 30 th June 2009 Imaging Characteristics of Ultra-Violet Imaging Telescope (UVIT) through.
SPACE TELESCOPE SCIENCE INSTITUTE Operated for NASA by AURA COS Status FUV Detector “1-bounce design” NUV Detector HST aberration fully-corrected Calibration.
Telescope Guiding with a HyViSI H2RG Used in Guide Mode Lance Simms Detectors for Astronomy /2/09.
Mid-InfRAred Camera wo LEns (MIRACLE) for SPICA Takehiko Wada and team MIRACLE.
NIRSpec Operations Concept Michael Regan(STScI), Jeff Valenti (STScI) Wolfram Freduling(ECF), Harald Kuntschner(ECF), Robert Fosbury (ECF)
AST 443/PHY 517 : Observational Techniques November 6, 2007 ASTROMETRY By: Jackie Faherty.
Astrometry & the Yale/WIYN ODI Survey. Potential astrometric projects Local luminosity function (van Altena, et al.) obtain  ≤ 0.10 parallaxes to 150.
2004 January 27Mathematical Challenges of Using Point Spread Function Analysis Algorithms in Astronomical ImagingMighell 1 Mathematical Challenges of Using.
1 FINAL DESIGN REVIEW | TUCSON, AZ | OCTOBER 21-25, 2013 Name of Meeting Location Date - Change in Slide Master Title of Presentation Andrew Connolly LSST.
ACS Drizzling Overview J. Mack; DA Training 10/5/07 Distortion Dither Strategies MultiDrizzle ‘Fine-tuning’ Data Quality Photometry.
1 System wide optimization for dark energy science: DESC-LSST collaborations Tony Tyson LSST Dark Energy Science Collaboration meeting June 12-13, 2012.
Pachon Sky Camera Christopher Stubbs Chuck Claver Jan 25, 2014.
AST3-1 photometry from Dome A Bin Ma, Peng Wei, Yi Hu, Zhaohui Shang NAOC AST3
Data Analysis Software Development Hisanori Furusawa ADC, NAOJ For HSC analysis software team 1.
UV - Visible Systems Peter Moore AURA / NOAO / ETS.
HARPS Data Flow System Christophe Lovis Geneva Observatory HARPS-N PDR, 6-7 December 2007, Cambridge MA.
Pan-STARRS and SNe Paul Price Institute for Astronomy University of Hawaii.
PVPhotFlux PACS Photometer photometric calibration MPIA PACS Commissioning and PV Phase Plan Review 21 st – 22 nd January 2009, MPE Garching Markus Nielbock.
LSST and VOEvent VOEvent Workshop Pasadena, CA April 13-14, 2005 Tim Axelrod University of Arizona.
Pan-STARRS Seminar: IPPEugene Magnier Pan-STARRS Image Processing Pipeline An Overview IFA Pan-STARRS Seminar 735 October 6, 2004.
System Performance Metrics and Current Performance Status George Angeli.
The LSST Data Processing Software Stack Tim Jenness (LSST Tucson) for the LSST Data Management Team Abstract The Large Synoptic Survey Telescope (LSST)
National Science Foundation, July 23, 2001 The Orthogonal Transfer Array Astronomy & Astrophysics Decadal Survey Large Synoptic Survey Telescope (LSST)
Photometry and Astrometry: Bright Point Sources May 16, 2006 Cullen Blake.
GSPC -II Program GOAL: extend GSPC-I photometry to B = V ˜ 20 add R band to calibrate red second-epoch surveys HOW: take B,V,R CCD exposures centered at.
T. Axelrod, NASA Asteroid Grand Challenge, Houston, Oct 1, 2013 Improving NEO Discovery Efficiency With Citizen Science Tim Axelrod LSST EPO Scientist.
LSST Commissioning Overview and Data Plan Charles (Chuck) Claver Beth Willman LSST System Scientist LSST Deputy Director SAC Meeting.
Transient Waveform Recording Utilizing TARGET7 ASIC
Multi-beaming & Wide Field Surveys
Alex Fullerton STScI / NIRISS Team Lead
Observing Strategies and Constraints
Towards the first detection using SPT polarisation
E. Ponce2-1, G. Garipov2, B. Khrenov2, P. Klimov2, H. Salazar1
LSST Commissioning Overview and Data Plan Charles (Chuck) Claver Beth Willman LSST System Scientist LSST Deputy Director SAC Meeting.
T. Eberl for Robert Lahmann and the Erlangen acoustic group
Optical Survey Astronomy DATA at NCSA
C.Baltay and S. Perlmutter December 15, 2014
NIKA Oct 2009 Run: Calibration & Sensitivity
Chris Willott, Loic Albert, René Doyon, and the FGS/NIRISS Team
ESAC 2017 JWST Workshop JWST User Documentation Hands on experience
Pan-STARRS Gigapixel Camera
The pointing calibration of the WFCTA tracking system
LSST Photometric Calibration
Pan-STARRS Gigapixel Camera
Pan-STARRS Gigapixel Camera
Karen Meech Institute for Astronomy TOPS 2003
Echidna: current status and expected performance
Presentation transcript:

Pan-STARRS observational requirements specification

Outline Benchmark design specs –Telescopes –Detectors –Pipeline –Data products –Precision goals Specification of observational requirements –Format for input to science DWG

Pan-STARRS in a Nutshell Who? –IfA - detectors, pipelines, science, site; MHPCC - data processing; SAIC - massive databases; Lincoln Lab - detectors What? –Dedicated wide field optical survey A  =54 m 2 deg 2 –“pilot project” for LSST How? –Funded by AFRL –1st year (design development) funded - 2nd year funding in place - total system cost ~$40M When? –To be operational in 2006

Telescope specs 4 x 1.8-2m RC + WF corrector 7 sq deg FOV F/4 or ~  m/arcsec A  = 4 x m 2 deg 2 –MEGACAM, SUPRIMECAM ~ 8 m 2 deg 2 Filters: BVRIZ, R+V (U?) Dedicated follow up telescope?

Detectors Array of arrays –4 x (8 x 8) x (8 x 8) x (512 x 512) = 4 x 1Bn pixels OTCCD 0”.3 pixels -> 12  m pitch ~2s read out ~3e read noise –  2 read = 0.1  2 t ~ 15 s (V+R)

The Orthogonal Transfer Array (OTA) A new paradigm in large imagers OTCCD pixel structure Basic OTCCD cell OTA: 8x8 array of OTCCDs

OTCCD Array

Electronics – Signal Chain SDSU dual channel video board –2 channels –150 kpixel/sec –CDS, 16 bit ADC –15 W power Analog Devices 9826 –3 channels (RGB) –15 Mpixel/sec –CDS, 16 bit ADC –250 mW power

Operation mode options Simultaneous –4 telescopes observe the same field –7 sq deg => ~6000 sq deg / 30s integration Independent –28 sq deg –Poorer rejection of cosmic ray and other backgrounds

The pipeline Image acquisition Flat fielding/sky subtraction/photo calibration Registration Warping to sky coordinates –0”.15-0”.2 sampling Stacking/cosmic ray rejection Convolution with PSF (rotated) Differencing Accumulation

Data products Cumulative sky images (BVRIZ…) –0”.15-0”.2 sampling –Catalogs Difference images –High resolution real-time stream –Lossy compressed -> archive –Transient catalogs Point source ML fits etc

Precision goals Photometry –~1% absolute –Better relative Astrometry –Statistical:  ~ 0”.07 (FWHM/0”.6)(5/SN) Floor at ~0”.003 –Systematics: < 0”.10 Coherent over ~10 arcmin

Performance summary Sensitivity (assuming 0.6” seeing) –T(R=24) = 58s –T(V=24.4) = 67s –T(R+V) = 31s 30s exposure -> 6000 sq deg / night Sky noise –7e/s/pixel from sky (R+V) –Read noise ~2-3e is negligible for t >~ 20s Astrometry –Sigma=0”.07 (FWHM/0”.6) / (SN/5) –Systematics limited by atmosphere

Observational Requirements Specification Fundamental parameters –Sky coverage  –Depth/integration time t int –Repeat visit cadence requirements (if any) –Filter requirements Other requirements –Need for follow up? –Need for archival image data? –Time criticality? –Simultaneous multi-passband imaging?

Inputs to science design working group: Science case: –Science objectives –Why will this be interesting in ? Requirements for optimal performance –I.e. what if Pan-STARRS were used exclusively for this task Minimum requirements –Filters, integration times, follow up needs etc. External requirements (if any)