FESR Consorzio COMETA - Progetto PI2S2 Supernova Remnants and Grid Computing at INAF-OAPa Marco Miceli Consorzio COMETA, INAF-OAPa.

Slides:



Advertisements
Similar presentations
Supernova Remnants Shell-type versus Crab-like Phases of shell-type SNR.
Advertisements

Modeling photon and neutrino emission from the supernova remnant RX J  Constraints from geometry  Constraints from spectral energy distribution.
Strange Galactic Supernova Remnants G (the Tornado) & G in X-rays Anant Tanna Physics IV 2007 Supervisor: Prof. Bryan Gaensler.
RX J alias Vela Jr. The Remnant of the Nearest Historical Supernova : Impacting on the Present Day Climate? Bernd Aschenbach Vaterstetten, Germany.
Pulsar Wind Nebulae with LOFAR Jason Hessels (ASTRON/UvA) Astrophysics with E-LOFAR - Hamburg - Sept. 16 th -19 th, 2008.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
X-ray Properties of Five Galactic SNRs arXiv: Thomas G. Pannuti et al.
Astroparticle Physics : Fermi’s Theories of Shock Acceleration - II
Formulation for the Relativistic Blast Waves Z. Lucas Uhm Research Center of MEMS Space Telescope (RCMST) & Institute for the Early Universe (IEU), Ewha.
Galaxies Cluster formation : Numerical Simulations and XMM Observations JL Sauvageot *, Elena Belsole *,R.Teyssier *, Herve Bourdin + Service d'Astrophysique.
NASA's Chandra Sees Brightest Supernova Ever N. Smith et al. 2007, astro-ph/ v2.
New evidence for strong nonthermal effects in Tycho’s supernova remnant Leonid Ksenofontov 1 H.J.Völk 2, E.G.Berezhko 1, 1 Yu.G.Shafer Institute of Cosmophysical.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
Chamber Dynamic Response Modeling Zoran Dragojlovic.
Marco Miceli, INAF – Osservatorio Astronomico di Palermo Consorzio COMETA, Italy Collaborators F. Bocchino, INAF – Osservatorio Astronomico di Palermo,
Dejan Urošević Department of Astronomy, Faculty of Mathematics, University of Belgrade Shock Waves: II. HII Regions + Planetary Nebulae.
January 8, st AAS Meeting1 Nucleosynthesis, Pulsars, Cosmic Rays, and Shock Physics: High Energy Studies of Supernova Remnants with Chandra and.
Zhang Ningxiao.  Emission of Tycho from Radio to γ-ray.  The γ-ray is mainly accelerated from hadronic processes.
Diagnostics of the origin of X- ray emission in Cygnus Loop Xin Zhou, INAF – Osservatorio Astronomico di Palermo, Italy & Nanjing University, ChinaCollaborators:
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
ASCI/Alliances Center for Astrophysical Thermonuclear Flashes Evaporation of Clouds in Thermally Conducting, Radiative Supernova Remnants S. Orlando (1),
About the 8 keV plasma at the Galactic Center CEA, Saclay Belmont R. Tagger M. UCLA Muno M. Morris M. Cowley S. High Energy Phenomena in the Galactic Center.
I. Origin of the dust emission from Tycho’s SNR II. Mapping observations of [Fe II] lines and dust emission of IC443 by IRSF & AKARI III. Summary AKARI.
Yutaka Fujita (Osaka U.) Fuijta, Takahara, Ohira, & Iwasaki, 2011, MNRAS, in press (arXiv: )
COSPAR 2008, Montreal, 13 July Patrick Slane (CfA) X-ray Observations of Supernova Remnant Shocks.
High Performance Computing on the GRID Infrastructure of COMETA S. Orlando 1,2, G. Peres 3,1,2, F. Reale 3,1,2, F. Bocchino 1,2, G.G. Sacco 2, M. Miceli.
Origin of solar systems 30 June - 2 July 2009 by Klaus Jockers Max-Planck-Institut of Solar System Science Katlenburg-Lindau.
Rino Bandiera, Arcetri Obs., Firenze, ItalyA Basic Course on SNRs A Basic Course on Supernova Remnants Lecture #1 –How do they look and how are observed?
Pulsar wind nebulae and their interaction with the environments Fangjun Lu 卢方军 Institute of High Energy Physics Chinese Academy of Sciences.
Review for Quiz 2. Outline of Part 2 Properties of Stars  Distances, luminosities, spectral types, temperatures, sizes  Binary stars, methods of estimating.
Gas mixing and Star formation by shock waves and turbulence Claudio Melioli Elisabete M. de Gouveia Dal Pino (IAG-USP)
X-ray signature of shock modification in SN 1006 Supernova Remnants and Pulsar Wind Nebulae in the Chandra Era July , Boston, USA Marco Miceli.
Gilles Maurin – CEA Saclay - MODE10 - SNR session - November 2010 Geometry of acceleration in the bipolar remnant of SN1006 with XMM-Newton Gilles Maurin,
Image: Toward high-resolved hydrodynamic Simulations of Supernova remnants such as Cas A, Tycho.. Masaomi Ono.
Emission measure distribution in loops impulsively heated at the footpoints Paola Testa, Giovanni Peres, Fabio Reale Universita’ di Palermo Solar Coronal.
Progenitor stars of supernovae Poonam Chandra Royal Military College of Canada.
C. Y. Hui & W. Becker X-Ray Studies of the Central Compact Objects in Puppis-A & RX J Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse.
Barrel or Bilateral-shaped SNRs Jiangtao Li May 6th 2009.
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Expected Gamma-Ray Emission of SN 1987A in the Large Magellanic Cloud (d = 50 kpc) E.G.Berezhko 1, L.T. Ksenofontov 1, and H.J.Völk 2 1 Yu.G.Shafer Institute.
Shock-cloud interaction in the Vela SNR: the XMM-Newton view M. Miceli 1, F. Bocchino 2, A. Maggio 2, F. Reale 1 1.Dipartimento di Scienze Fisiche ed Astronomiche,
Turbulence and Magnetic Field Amplification in the Supernova Remnants Tsuyoshi Inoue (NAOJ) Ryo Yamazaki (Hiroshima Univ.) Shu-ichiro Inutsuka (Kyoto Univ.)
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
「すざく」 による超新星残骸 RCW86 の観測 Suzaku Observations of Supernova Remnant RCW86 山口 弘悦 (理研) Hiroya Yamaguchi (RIKEN) ← Preliminary image of the Suzaku mapping observation.
Efficiency of Mixing of Supernova Ejecta into Nearby Protoplanetary Disks Nicolas Ouellette & Steve Desch Arizona State University.
Learning target: I can describe black holes Vocabulary: black hole, Agenda: Blackhole notes Blackhole math Stellar evolution activity Learning target DEC.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
SNRs and PWN in the Chandra Era – S. OrlandoBoston, USA – July 2009 S. Orlando 1, O. Petruk 2, F. Bocchino 1, M. Miceli 3,1 1 INAF - Osservatorio Astronomico.
ASTR112 The Galaxy Lecture 12 Prof. John Hearnshaw 16. Evolution of the Galaxy 16.1 Star formation 16.2 Exchange of material between stars and ISM 16.3.
FESR Consorzio COMETA - Progetto PI2S2 Porting MHD codes on the GRID infrastructure of COMETA Germano Sacco & Salvatore Orlando.
High energy Astrophysics Mat Page Mullard Space Science Lab, UCL 7. Supernova Remnants.
The “youngest” Ia SNR in the Galaxy. The best to study early phase of Type Ia Cosmic Ray acceleration at the Shell The best to study the cosmic ray origin.
Lecture 9: Wind-Blown Bubbles September 21, 2011.
Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.
Star Formation Triggered By First Supernovae Fumitaka Nakamura (Niigata Univ.)
ALMA observations of Molecules in Supernova 1987A
The signature of a wind reverse shock in GRB’s Afterglows
Star Formation Nucleosynthesis in Stars
SN 1987A: The Formation & Evolution of Dust in a Supernova Explosion
Vikram V Dwarkadas University of Chicago
Finding The First Cosmic Explosions
A large XMM-Newton project on SN 1006
A large XMM-Newton project on SN 1006
XMM-Newton Observation of the composite SNR G0. 9+0
Nebula By: Mckayla Morrison.
The Interstellar Medium
Presentation transcript:

FESR Consorzio COMETA - Progetto PI2S2 Supernova Remnants and Grid Computing at INAF-OAPa Marco Miceli Consorzio COMETA, INAF-OAPa Grid Open Days all’Università di Palermo Palermo, F. Bocchino, INAF-OAPa, Consorzio COMETA S. Orlando, INAF-OAPa, Consorzio COMETA F. Reale, Università di Palermo, INAF-OAPa, Consorzio COMETA E. Troja, Università di Palermo, INAF-IASF Pa

Palermo, Grid Open Days all’Università di Palermo, Outline Introduction: Supernova Remnants Studying SNRs by using GRID Hydrodynamic Modeling Analysis of X-ray observations Conclusions

Palermo, Grid Open Days all’Università di Palermo, Supernova Remnants (SNRs) Supernova explosion Total energy released:  erg “Visible” energy:  erg Mass ejected: several solar masses Formation of blast wave shocks Heating of the ambient medium Compression Interaction with interstellar clouds Propagation of the ejecta Chemical enrichment of the galaxy Propagation of supersonic “bullets” Crab nebula hard X-rays soft X-rays Infrared

Palermo, Grid Open Days all’Università di Palermo, Supernova Remnants (SNRs) Physical processes involved: Purely Hydrodynamic effects Thermal conduction Radiative cooling (thermal emission) Synchrotron losses (non-thermal emission) Non-equilibrium of ionization Therefore an accurate diagnostics of the physical properties of the plasma and a detailed modeling of the system are required

Palermo, Grid Open Days all’Università di Palermo, Studying SNRs by using GRID Modeling: hydrodynamic simulations performed on the HPC system of the COMETA GRID. Data Analysis: extensive spectral analysis performed with multiple GRID tasks High Performance Computing is required to solve numerically the HD equations describing the evolution of the system. See Orlando’s talk for details Spatially resolved analysis of X-ray spectra observed with the CCD cameras of the XMM-Newton X-ray telescope

Palermo, Grid Open Days all’Università di Palermo, Hydrodynamic Modeling The Vela SNR Distance: ~250 pc Age: ~11000 yr In middle-aged SNR the bulk of the X-ray emission is commonly associated with shocked ISM, but: Vela SNR: 6 X-ray emitting shrapnels, probably associated with ejecta (outside the border of the shell). Recent discovery of new shrapnels inside the shell (Miceli et al. 2007, submitted) keV Rosat All Sky Survey

Palermo, Grid Open Days all’Università di Palermo, Hydrodynamic Modeling  : mass density v : bulk velocity P : pressure E : tot. energy per unit mass q :  (T)  T (Spitzer & saturated) n : density  ( T ): radiative losses function  : internal energy per unit mass Numerical solution through the FLASH code, an advanced HD code made parallel with MPI (see Orlando’s talk for details) P= Aims: evolution of supersonic fragments of ejecta (interaction with the shock waves and with the ambient medium) Equations of the model:

Palermo, Grid Open Days all’Università di Palermo, Initial conditions: exploding sphere of ejecta with a density inhomogeneity (i.e the shrapnel) M ej = 12 M ⊙ E = erg R 0 = 4.5 x cm V ej (R 0 ) = 6 x cm/s (v(R)  r)  (R) following Wang & Chevalier 2002 M shrapnel = 1/20 M ej  shrapnel =  ej 2-D simulations in cylindrical coordinates (axial symmetry). We follow the evolution of the system for ~ yr (the Vela age is ~ yr) Hydrodynamic Modeling r (cm) z (cm)

Palermo, Grid Open Days all’Università di Palermo, Hydrodynamic Modeling Parameter space exploration: We investigate how the evolution of the system depends on the density contrast (between the shrapnel and the surrounding ejecta) and on the initial position of the shrapnel. R shrapnel /R 0  (*) The COMETA HPC system is expected to be more efficient than the CINECA CLX by about a factor of 1.5 (see Orlando’s talk) “Complete” run executed on the CINECA CLX cluster (total CPU time~9000 h) “Complete” runs to be done on the COMETA HPC system (*) Pure HD run (no thermal cond. no rad. losses) executed on the HPC system COMETA (total CPU time~250 h, memory~7 Mb, output size~3 Gb).

Palermo, Grid Open Days all’Università di Palermo, flash.jdl Type = "Job"; JobType = "MVAPICH2"; NodeNumber = 32; Executable = "flash2"; StdOutput = "mpi.out"; StdError = "mpi.err"; InputSandbox = {"watchdog.sh","mpi.pre.sh","mpi.post.sh","flash.par","flash2"}; OutputSandbox = {"mpi.err","mpi.out","watchdog.out",“shrapnel.log","amr_log"}; Requirements = (other.GlueCEUniqueId == "unipa-ce- 01.pa.pi2s2.it:2119/jobmanager-lcglsf-hpc"); MyProxyServer = "grid001.ct.infn.it"; RetryCount = 3;

Palermo, Grid Open Days all’Università di Palermo, Hydrodynamic Modeling log  (g/cm 3 ) T (K) spatial res x 2048 point The Vela SNR keV ROSAT All SKy Survey ( keV) The COMETA HD run:  = 30, R shr = 1/3 R 0 )

Palermo, Grid Open Days all’Università di Palermo, Analysis of X-ray observations Equivalent width eV Spatially resolved spectral analysis of XMM-Newton observations IC 443SN keV cnt/s

Palermo, Grid Open Days all’Università di Palermo, Analysis of X-ray observations Define Model Calculate Model Folding by detector response Compare to data Change model parameters Forward-fitting algorithm For each spectral region Local/absolute  2 minimum?

Palermo, Grid Open Days all’Università di Palermo, Analysis of X-ray observations Finding a new  2 minimum

Palermo, Grid Open Days all’Università di Palermo, Analysis of X-ray observations A12N B1B1 12P F1F1 Off- line B2B2 12P F2F2

Palermo, Grid Open Days all’Università di Palermo, Conclusions Using the GRID for HPC Preliminary simulations already performed Complete parameter space exploration scheduled Need for more efficiency (see Orlando’s talk) Using the GRID for data analysis Huge speed-up in the spectral analysis process (Troja et al A&A, submitted) Large program of spatially resolved spectral analysis of SN 1006

Palermo, Grid Open Days all’Università di Palermo, Any Questions ? Thank you very much for your kind attention!