Section 6.1 Set and Set Operations. Set: A set is a collection of objects/elements. Ex. A = {w, a, r, d} Sets are often named with capital letters. Order.

Slides:



Advertisements
Similar presentations
Union Definition: The union of sets A and B, denoted by A B, contains those elements that are in A or B or both: Example: { 1, 2, 3} {3, 4, 5} = { 1,
Advertisements

Introduction to Set Theory
1. Number of Elements in A 2. Inclusion-Exclusion Principle 3. Venn Diagram 4. De Morgan's Laws 1.
Instructor: Hayk Melikya
Week 21 Basic Set Theory A set is a collection of elements. Use capital letters, A, B, C to denotes sets and small letters a 1, a 2, … to denote the elements.
Denoting the beginning
1 Section 1.7 Set Operations. 2 Union The union of 2 sets A and B is the set containing elements found either in A, or in B, or in both The denotation.
SET.   A set is a collection of elements.   Sets are usually denoted by capital letters A, B, Ω, etc.   Elements are usually denoted by lower case.
Chapter 5 Section 1 Sets Basics Set –Definition: Collection of objects –Specified by listing the elements of the set inside a pair of braces. –Denoted.
Chapter 2 The Basic Concepts of Set Theory
Ch 9 Inequalities and Absolute Value
1 Set Theory. 2 Set Properties Commutative Laws: Associative Laws: Distributive Laws:
1 Set Theory. Notation S={a, b, c} refers to the set whose elements are a, b and c. a  S means “a is an element of set S”. d  S means “d is not an element.
Chapter 2 The Basic Concepts of Set Theory © 2008 Pearson Addison-Wesley. All rights reserved.
1 Learning Objectives for Section 7.2 Sets After today’s lesson, you should be able to Identify and use set properties and set notation. Perform set operations.
Discrete Maths Objective to re-introduce basic set ideas, set operations, set identities , Semester 2, Set Basics 1.
Survey of Mathematical Ideas Math 100 Chapter 2
Operations on Sets – Page 1CSCI 1900 – Discrete Structures CSCI 1900 Discrete Structures Operations on Sets Reading: Kolman, Section 1.2.
Chapter 2 The Basic Concepts of Set Theory © 2008 Pearson Addison-Wesley. All rights reserved.
This section will discuss the symbolism and concepts of set theory
Venn Diagrams/Set Theory   Venn Diagram- A picture that illustrates the relationships between two or more sets { } are often used to denote members of.
2.1 – Sets. Examples: Set-Builder Notation Using Set-Builder Notation to Make Domains Explicit Examples.
MTH 231 Section 2.1 Sets and Operations on Sets. Overview The notion of a set (a collection of objects) is introduced in this chapter as the primary way.
Introduction to Set Theory. Introduction to Sets – the basics A set is a collection of objects. Objects in the collection are called elements of the set.
Set Theory Dr. Ahmed Elmoasry. Contents Ch I: Experiments, Models, and Probabilities. Ch II: Discrete Random Variables Ch III: Discrete Random Variables.
CS201: Data Structures and Discrete Mathematics I
Copyright © 2006 Brooks/Cole, a division of Thomson Learning, Inc. Sets and Counting6 Sets and Set Operations The Number of Elements in a Finite Set The.
SECTION 2-3 Set Operations and Cartesian Products Slide
Sets Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Definition of Set A set is a collection of objects called elements.
ELEMENTARY SET THEORY.
Copyright © 2006 Brooks/Cole, a division of Thomson Learning, Inc. Sets and Counting6 Sets and Set Operations The Number of Elements in a Finite Set The.
Chapter SETS DEFINITION OF SET METHODS FOR SPECIFYING SET SUBSETS VENN DIAGRAM SET IDENTITIES SET OPERATIONS.
Set Operations Chapter 2 Sec 3. Union What does the word mean to you? What does it mean in mathematics?
9.1 Sets, Intersections, and Unions  Standard 1.0  8 Key Terms.
Chapter 2 With Question/Answer Animations. Section 2.1.
Introduction to Set theory. Ways of Describing Sets.
Union and Intersection
Discrete Mathematics Set.
College Algebra: Section 8.1 Sets and Counting Objectives of this Section Find All the Subsets of a Set Find All the Subsets of a Set Find the Intersection.
1 Section 1.2 Sets A set is a collection of things. If S is a set and x is a member or element of S we write x  S. Othewise we write x  S. The set with.
Module #3 - Sets 3/2/2016(c) , Michael P. Frank 2. Sets and Set Operations.
Set Operations Section 2.2.
Sets and Basic Operations on Sets Notation A set will usually be denoted by a capital letter, such as, A,B,X, Y,..., whereas lower-case letters, a, b,
Fr: Discrete Mathematics by Washburn, Marlowe, and Ryan.
MATH 2311 Section 2.2. Sets and Venn Diagrams A set is a collection of objects. Two sets are equal if they contain the same elements. Set A is a subset.
Chapter 7 Sets and Probability Section 7.1 Sets What is a Set? A set is a well-defined collection of objects in which it is possible to determine whether.
Thinking Mathematically Venn Diagrams and Subsets.
Thinking Mathematically Venn Diagrams and Set Operations.
The Basic Concepts of Set Theory. Chapter 1 Set Operations and Cartesian Products.
6.1 Sets and Set Operations Day 2 Turn to page 276 and look at example 6.
Sets and Operations TSWBAT apply Venn diagrams in problem solving; use roster and set-builder notation; find the complement of a set; apply the set operations.
Dr. Ameria Eldosoky Discrete mathematics
The set of whole numbers less than 7 is {1, 2, 3, 4, 5, 6}
Sets Page 746.
CHAPTER 3 SETS, BOOLEAN ALGEBRA & LOGIC CIRCUITS
CSNB 143 Discrete Mathematical Structures
Lecture 04 Set Theory Profs. Koike and Yukita
Sets Section 2.1.
The Basic Concepts of Set Theory
Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103 Chapter 2 Sets Slides are adopted from “Discrete.
CS100: Discrete structures
Set and Set Operations Grab a sheet from front.
Set Operations Section 2.2.
        { } Sets and Venn Diagrams Prime Numbers Even Numbers
The Basic Concepts of Set Theory
Chapter Sets &Venn Diagrams.
SETS Sets are denoted by Capital letters Sets use “curly” brackets
Lecture Sets 2.2 Set Operations.
Introduction A set is a collection of objects.
Presentation transcript:

Section 6.1 Set and Set Operations

Set: A set is a collection of objects/elements. Ex. A = {w, a, r, d} Sets are often named with capital letters. Order of elements doesn’t matter, no duplicates. Set-builder notation: rule describes the definite property (properties) an object x must satisfy to be part of the set. Ex. B = {x | x is an even integer} Read: “x such that x is an even integer” Notation: w is an element of set A is written

Set Equality: Two sets A and B are equal, written A = B, if and only if they have exactly the same elements. Subset: If every element of a set A is also an element of a set B then A is a subset of B, and is written Ex. A = {w, a, r, d}; B = {d, r, a, w} Ex. A = {r, d}; B = {r, a, w, d, e, t} Every element in A is also in B Every element in A is in B and every element in B is in A.

Empty Set: The set that contains no elements is called the empty set and is denoted Universal Set: The set of all elements of interest in a particular discussion is called the universal set and is denoted U. Note: The empty set is a subset of every set

Set Union: Let A and B be sets. The union of A and B, written is the set of all elements that belong to either A or B. Set Intersection: Let A and B be sets. The intersection of A and B, written is the set of all elements that are common to A and B. Set Operations

Ex. Given the sets: Combine the sets Overlap of the sets

Venn Diagrams U AB – visual representation of sets Rectangle = Universal Set Sets are represented by circles

Venn Diagrams U AB C A C B U

Complement of a Set: If U is a universal set and A is a subset of U, then the set of all elements in U that are not in A is called the complement of A, written A C. Set Complementation

Set Operations Commutative Laws Associative Laws Distributive Laws

De Morgan’s Laws Let A and B be sets, then

Ex. Given the sets: Elements not in A. Elements in A and not in B.

Venn Diagrams U A AB U