1 M. Selen, FPCP/02 Expectation Experiments Rate Asymmetries Other Approaches Outlook CP Violation in D Meson Decays CP Violation in D Meson Decays Mats.

Slides:



Advertisements
Similar presentations
Sharpening the Physics case for Charm at SuperB D. Asner, G. Batignani, I. Bigi, F. Martinez-Vidal, N. Neri, A. Oyanguren, A. Palano, G. Simi Charm AWG.
Advertisements

Charm results overview1 Charm...the issues Lifetime Rare decays Mixing Semileptonic sector Hadronic decays (Dalitz plot) Leptonic decays Multi-body channels.
Title Gabriella Sciolla Massachusetts Institute of Technology Representing the BaBar Collaboration Beauty Assisi, June 20-24, 2005 Searching for.
CHARM-2007, Ithaca, NY Alexey Petrov (WSU) Alexey A. Petrov Wayne State University Table of Contents: Introduction CP-violation in charmed mesons Observables.
Sep. 29, 2006 Henry Band - U. of Wisconsin 1 Hadronic Charm Decays From B Factories Henry Band University of Wisconsin 11th International Conference on.
Marina Artuso 1 Beyond the Standard Model: the clue from charm Marina Artuso, Syracuse University  D o D o, D o  K -  + K-K- K+K+ ++  K-K-
Wolfgang Menges, Queen Mary Giampiero Mancinelli University of Cincinnati CHARM 2007 – Cornell, USA Experimental Prospects for CP and T Violation Studies.
Recent Charm Results From CLEO Searches for D 0 -D 0 mixing D 0 -> K 0 s  +  - D 0 ->K *+ l - Conclusions Alex Smith University of Minnesota.
Charm results from CLEOIII, CLEO-c Steven Dytman Univ. of Pittsburgh OUTLINE: 1.Introduction to CLEO 2.D 3-body decays 3.Semileptonic D decay K-K- --
1 Charm Decays at Threshold Sheldon Stone, Syracuse University.
1 B Physics at CDF Junji Naganoma University of Tsukuba “New Developments of Flavor Physics“ Workshop Tennomaru, Aichi, Japan.
Measurements of  and future projections Fabrizio Bianchi University of Torino and INFN-Torino Beauty 2006 The XI International Conference on B-Physics.
Charmonium Decays in CLEO Tomasz Skwarnicki Syracuse University I will concentrate on the recent results. Separate talk covering Y(4260).
Sin2  1 /sin2  via penguin processes Beauty 2006 Sep.25-29, Univ. of Oxford Yutaka Ushiroda (KEK)
B Decays to Open Charm (an experimental overview) Yury Kolomensky LBNL/UC Berkeley Flavor Physics and CP Violation Philadelphia, May 18, 2002.
Φ 3 measurements at B factories Yasuyuki Horii Kobayashi-Maskawa Institute, Nagoya University, Japan Epiphany Conference, Cracow, 9th Jan
June 20, 2002Alex Smith University of Minnesota Recent Advances in Charm Physics Why charm physics? Searches for new physics using D meson decays –Mixing.
Beauty 2006 R. Muresan – Charm 1 Charm LHCb Raluca Mureşan Oxford University On behalf of LHCb collaboration.
Donatella Lucchesi1 B Physics Review: Part II Donatella Lucchesi INFN and University of Padova RTN Workshop The 3 rd generation as a probe for new physics.
D 0 D 0 bar Mixing and CP Violation at BESIII Kanglin He June 2006, Beijing.
Recent Charm from CLEO Yongsheng Gao Southern Methodist University (CLEO Collaboration) HEP2003 Europhysics Conference Aachen, Germany July 17 ─ 23, 2003.
Introduction to Flavor Physics in and beyond the Standard Model
Todd K. Pedlar The Ohio State University for the CLEO Collaboration Recent Results in B and D Decays from CLEO BEACH 2002, Vancouver June 26, 2002.
Search for Direct CP Violation in 3-body Cabibbo Suppressed D 0 Decays Kalanand Mishra, G. Mancinelli, B. T. Meadows, M. D. Sokoloff University of Cincinnati.
M. Adinolfi - University of Bristol1/19 Valencia, 15 December 2008 High precision probes for new physics through CP-violating measurements at LHCb M. Adinolfi.
25/9/2007 LHCb UK meeting 1 ADS determination of γ with B→(Kπ) D K, B→(hh) D K and B→(K3π) D K Jim Libby (University of Oxford)
Physical Program of Tau-charm Factory V.P.Druzhinin, Budker INP, Novosibirsk.
Pavel Krokovny Heidelberg University on behalf of LHCb collaboration Introduction LHCb experiment Physics results  S measurements  prospects Conclusion.
Pavel Krokovny, KEK Measurement of      1 Measurements of  3  Introduction Search for B +  D (*)0 CP K +  3 and r B from B +  D 0 K + Dalitz.
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Hadronic rare B-decays Sanjay K Swain Belle collaboration B - -> D cp K (*)- B - ->
1 Highlights from Belle Jolanta Brodzicka (NO1, Department of Leptonic Interactions) SAB 2009.
D 0 - D 0 Mixing at B A B AR Amir Rahimi The Ohio State University For B A B AR Collaboration.
Sandra Malvezzi - Charm Meson Results in Focus 1 Sandra Malvezzi I.N.F.N. Milano Meson Lifetimes, Decays, Mixing and CPV in FOCUS.
Maria Różańska, INP Kraków HEP2003 Europhysics Conference –Aachen, July 18th 1 CPV in B → D (*) K (*) (and B → D K  ) in BaBar and Belle Outline: CPV.
Measurement of  2 /  using B   Decays at Belle and BaBar Alexander Somov CKM 06, Nagoya 2006 Introduction (CP violation in B 0   +   decays) Measurements.
1 M. Selen, CIPANP/03 Recent Results in Hadronic Charm Decays Mats Selen, University of Illinois 2003 CIPANP, May 19-24, New York, NY.
Andrzej Bożek for Belle Coll. I NSTITUTE OF N UCLEAR P HYSICS, K RAKOW ICHEP Beijing 2004  3 and sin(2  1 +  3 ) at Belle  3 and sin(2  1 +  3 )
Direct CP violation in D  hh World measurements of In New Physics: CPV up to ~1%; If CPV ~1% were observed, is it NP or hadronic enhancement of SM? Strategy:
Search for D 0 D 0 Mixing and Direct CP Violation in 2-body Hadronic Decays Y.Z. Sun, J.Y. Zhang IHEP Mar. 08, 2006.
5 Jan 03S. Bailey / BaBar : B decays to Measure gamma1 B Decays to Measure  Stephen Bailey Harvard University for the BaBar Collaboration PASCOS 2003.
DCPV/Rare George W.S. Hou (NTU) Beauty Assisi 1 Direct CP and Rare Decays June 21, 2005 B Physics at Hadronic Machines, Assisi.
CLEO-c Workshop 1 Data Assumptions Tagging Rare decays D mixing CP violation Off The Wall Beyond SM Physics at a CLEO Charm Factory (some food for thought)
Measurements of   Denis Derkach Laboratoire de l’Accélérateur Linéaire – ORSAY CNRS/IN2P3 FPCP-2010 Turin, 25 th May, 2010.
Mats Selen, HEP Measuring Strong Phases, Charm Mixing, and DCSD at CLEO-c Mats Selen, University of Illinois HEP 2005, July 22, Lisboa, Portugal.
D0 mixing and charm CP violation
Present status of Charm Measurements
On Behalf of the BaBar Collaboration
CP violation and D Physics
Discovering CP Violation and Mixing in the Charm Sector
Reaching for  (present and future)
Beyond the Standard Model: the clue from charm ...
New Physics Prospects in Mixing and CP Violation at Belle II
Status of mixing and CP-violation measurements at LHCb
Time-dependent analyses at D0-D0 threshold
Measurements of a and future projections
Max Baak, NIKHEF on behalf of the BABAR and BELLE Collaborations
HEP2003 Europhysics Conference Aachen, Germany
Lecture 3 Rare and forbidden charm decays Neutral D mixing and CP violation Hai-Bo Li IHEP 8-10 July, Hai-Bo Li.
Charm Mixing, CPV and Rare D0 decays at BaBar
CP violation in the charm and beauty systems at LHCb
BESIII 粲介子的强子衰变 周晓康 中国科学技术大学 BESIII 粲介(重)子物理研讨会.
University of Minnesota on behalf of the CLEO Collaboration
Hadronic Substructure & Dalitz Analyses at CLEO
Charmless Quasi-two-Body Modes at BaBar
D0 Mixing and CP Violation from Belle
f3 measurements by Belle
Search for Direct CP Violation in 3-body Cabibbo-suppressed D0 Decays
G. Mancinelli, B.T. Meadows, K. Mishra, M.D. Sokoloff
Kim Vervink EPFL – Lausanne Belle collaboration
Measurement of f3 using Dalitz plot analysis of B+ D(*)K(*)+ by Belle
Presentation transcript:

1 M. Selen, FPCP/02 Expectation Experiments Rate Asymmetries Other Approaches Outlook CP Violation in D Meson Decays CP Violation in D Meson Decays Mats Selen, University of Illinois 2002 FPCP Meeting, University of Pennsylvania

2 M. Selen, FPCP/02  ( ) ≠  Indirect CPV: Very small in charm since mixing is suppressed (i.e. good hunting ground for new physics)  ( ) ≠  Direct CPV:

3 M. Selen, FPCP/02 Since this decay is Singly Cabibbo Suppressed… Direct CPV: 1) Consider D 0 →     (same for K + K  K + K      K + K   ,  ,      ,        etc  ) c u u d u d W+W+

4 M. Selen, FPCP/02 c u u d u d d,s,b W+W+ Direct CPV: …we can modify it’s topology in a simple way to get a penguin: 1) Consider D 0 →     (same for K + K  K + K      K + K   ,  ,      ,        etc  )

5 M. Selen, FPCP/02 c u u d u d W+W+ c u u d u d b W+W+ different weak phases different strong phases are likely We have the ingredients: Expect A CP < in most cases

6 M. Selen, FPCP/02 2) Consider D + → K S   (also K S , K S a 1, K *      [K S        K S    D S  K S K   [K S   ] K* K   etc  ) c d s u d W+W+ d c d W+W+ s d u d Cabibbo Favored Decay Doubly Cabibbo Suppressed Decay

7 M. Selen, FPCP/02 CFD DCSD Lipkin & Xing

8 M. Selen, FPCP/02 ≤ in SM (from data) hopefully big (measurable in principle) ~5 x ~1 From CPV in K 0 system~ 3 x CFD DCSD New physics could make this much bigger Lipkin & Xing

9 M. Selen, FPCP/02 Bigi & Yamamoto, Phys. Lett B349 (1995) See Lipkin & Xing, Phys. Lett B450 (1999) 3 x new physics So what? D + → K S  +, K S  +, K S a 1 + … D 0 → K S  0, K S     … Should be able to see  K induced CPV with reconstructed D events. - This is in the ballpark for CLEO-c/Belle/BaBar New physics could make this asymmetry much bigger by increasing weak (and strong) phase differences. - If seen, this can be studied using a suite of decays involving K L and K S in final state. not suppressed (big BR)

10 M. Selen, FPCP/02 The usual suspects

11 M. Selen, FPCP/02Comments Since D + and D  (and similarly D 0 and D 0 ) are not produced in equal numbers in FOCUS and E791, these experiments normalize all asymmetries to some known Cabibbo favored mode. e + e  experiments need to worry about, A + , A FB For example: where

12 M. Selen, FPCP/02 These modes are “self-tagging” (no D* needed). E791  D + → K + K   +,  +,K * (892) 0  +,  +    + FOCUS  D + → K + K   +, K S K +, K S  + D + Decays

13 M. Selen, FPCP/ ± ± 282 D+→D+→ D→D→ 7355 ± 112 D→D→ 6860 ± 110 D+→D+→

14 M. Selen, FPCP/ ±110 D+→SD+→S 5518 ±110 D→SD→S 495 ±38 D+→SD+→S 454 ±42 D→SD→S

15 M. Selen, FPCP/ ± ± ± ± 28 D+→D+→ ± ± 201 D→D→ D+→D+→ D→D→ D + →   D  →  

16 M. Selen, FPCP/ ± ± ± ± 48 D+→D+→ D→D→ D+→D+→ D→D→

17 M. Selen, FPCP/02 stat stat & syst D ± A CP Summary   FOCUSE791  SS  S  + (  )     ± 1.1 ± 0.5 SS  ± 1.5 ± 0.9  S          ± 6.0 ± 1.5  S    S    ± 6.1 ± 1.2   ± 2.9   ± 3.6      ± 5.0   ± 4.2 S+(S)S+(S)  * All analyses statistics limited. * None are background free.

18 M. Selen, FPCP/02 D 0 Decays Use D* decays to tag D 0 flavor: E791  D 0 → K + K ,  +  , K   +    + FOCUS  D 0 → K + K ,  +   CLEO  D 0 → K + K ,  +  , K S  0, K S K S,  0  0

19 M. Selen, FPCP/02 333±21 276±20 149±17 194± ± ±87

20 M. Selen, FPCP/ ± ±47 606±31 571± ± ±144

21 M. Selen, FPCP/ ±65 930± ±151

22 M. Selen, FPCP/02 810±89 65±14

23 M. Selen, FPCP/02 stat stat & syst D 0 A CP Summary  CLEOFOCUSE791  SS SSSS        ± 2.2 ± 0.8   ± 3.2 ± 0.8 SS  ± 1.3   ± 4.8  S  ± 19   ± 2.2 ± 1.5   ± 3.9 ± 2.5   ± 4.9 ± 1.2   ± 7.8 ± 2.5 * All analyses statistics limited. * None are background free.

24 M. Selen, FPCP/02 Other Promising Approaches Look for CPV in Dalitz Plots:  Analyze D and D samples separately  Any differences in amplitudes & phases is an indication of CPV.  Work under way by several groups. Examples from CLEO  D 0 → K   +   (Published last year).  D 0 → K S  +    (Preliminary results).  D 0 →    +   (soon…)  D 0 →  S  0   (soon…).

25 M. Selen, FPCP/02 D0D0 KK   D0D0 KK   Y   KK D0D0 X D0D0 KK   Z D0→D0→

26 M. Selen, FPCP/02 ResonanceFit FractionPhase   (770)   (fixed)  K  (892)    4  K  (892)    4   (1700)    7  K   (1430)    7  K   (1430)    7  K  (1680)    11  Non-res   7 We are sensitive to the amplitude and phase of something with BR ~ (Show Movie)

27 M. Selen, FPCP/02 Fit D 0 and D 0 Dalitz Plots separately and look for asymmetries: Find A CP =  (Not an optimized ACP analysis)

28 M. Selen, FPCP/02 Almost no background D0→SD0→S Fit D 0 and D 0 samples separately writing with PRELIMINARY:

29 M. Selen, FPCP/02 E791 and FOCUS  Working on A CP analyses (for example Dalitz plots). CLEO-c  Still working on analyses using CLEO-II, II.V and III data.  CLEO-c will turn on in about a year.  ~30 million DD events (and new A CP search modes).  ~ 1.5 million D s D s events B Factories  In the next 5 (?) years Belle and BaBar will accumulate ~100 times the integrated luminosity that CLEO has at the  (4S).  Improve on present CLEO limits by at least a factor of 10. Hadron Machines  CDF & D0 are getting into the game.  BTeV (& LHC-b ?) could have 10 9 reconstructed charm events.  COMPASS ? Others ? BES Outlook (is interesting) E791       CLEO      

30 M. Selen, FPCP/02 Extra Slides…

31 M. Selen, FPCP/02 Observing this is evidence of CP At the  ”(3770) e+e+ ee  ++ K+K+  e + e    ”  D 0 D 0 J PC = 1  i.e. CP+ Suppose both D 0 ’s decay to CP eigestates f 1 and f 2 : These can NOT have the same CP : CP(f 1 f 2 ) = CP(f 1 ) CP(f 2 ) (-1) l = CP  +  (since l = 1) CPV through quantum coherence at CLEO-c Sensitivity to this will be at the ~1% level

32 M. Selen, FPCP/02 D 0 →        A CP Fits

33 M. Selen, FPCP/02 E791 references:  Phys. Lett. B403 (1997) 377  Phys. Lett. B421 (1998) 405 FOCUS references:  Phys. Lett. B491 (2000) 232  Phys. Rev. Lett. 88 (2002) CLEO references:  Phys. Rev. D63 (2001)  Phys. Rev. D65 (2002)  T. J. Bergfeld (Ph.D. Thesis, UIUC) Theory references:  Buchella et. al., Phys. Rev. D51 (1995)  Burdman hep-ph/  Bigi & Yamamoto, Phys. Lett B349 (1995)  Lipkin & Xing, Phys. Lett B450 (1999)