Integral Field Spectrograph Opto-mechanical concepts PIERRE KARST, JEAN-LUC GIMENEZ CPPM(CNRS),FRANCE.

Slides:



Advertisements
Similar presentations
LWIR FPA Mirror Image Problem & Recovery April 11, 2011 Roy W. Esplin Dave McLain.
Advertisements

Manchester 09/sept/2008A.Falou & P.Cornebise {LAL-Orsay}1 CALICE Meeting/ Manchester Sept 2008 SLAB Integration & Thermal Measurements.
SPL Intercavity support Conceptual design review 04/11/ A. Vande Craen TE/MSC-CMI.
A vertical-flexure CCD module Bruce C. Bigelow University of Michigan Department of Physics 10/7/04.
Área de Instrumentación NAHUAL Mechanical Concept Current Status F. Javier Fuentes Instituto de Astrofísica de Canarias September
SXC meeting SRON, July 19-20, SXC meeting 19-20/07/2007 Alignment Positioning of mirror with respect to detector (internal). Positioning of total.
IRSIS : Preliminary Fiber bundle design Original datas : Fiber focal plane of F/5,5 telescope primary focal plane - TBC Telescope FOV : 15’x15’
Ceramic Focal Plane Components For SNAP B. C
4m Undulator Design Concepts Amanda J Brummitt CCLRC RAL On behalf of the HeLiCal Collaboration.
FLAO Alignment Procedures G. Brusa, S. Esposito FLAO system external review, Florence, 30/31 March 2009.
Test Cryostat, OGSE and MGSE PACS IHDR: MPE 12/13 Nov 2003 AIV1 PACS Test Cryostat, OGSE and MGSE Gerd Jakob MPE.
NGAO Instrumentation Overview September 2008 Updated Sean Adkins.
NGAO Alignment Plan See KAON 719 P. Wizinowich. 2 Introduction KAON 719 is intended to define & describe the alignments that will need to be performed.
Wide-field, triple spectrograph with R=5000 for a fast 22 m telescope Roger Angel, Steward Observatory 1 st draft, December 4, 2002 Summary This wide-field,
PLATO kick-off meeting 09-Nov-2010 PLATO Payload overall architecture.
Integration and Alignment of Optical Subsystem Roy W. Esplin Dave McLain.
Oct 17, 2001SALT PFIS PDR - Structure1 Structure Interface/ constraints Loads Structure design rationale Truss Weight and CG Finite Element Analysis/ Image.
FNAL-SCRF 会議報告 1. Cryomodule, Plug-compatible Interface ( 大 内) 2. High Pressure Code, 5K Shield (Tom Peterson)
Space Frame Structures for SNAP Bruce C. Bigelow University of Michigan Department of Physics 11/04/04.
Solar orbiter – EUS instrument mechanical design Tim Froud and Doug Griffin.
SAM PDR1 SAM LGS Mechanical Design A. Montane, A. Tokovinin, H. Ochoa SAM LGS Preliminary Design Review September 2007, La Serena.
Pixel Support Tube Requirements and Interfaces M.Olcese PST CDR: CERN Oct. 17th 2001.
1 FRIDA Engineering Status 17/05/07 Engineering Status May 17, 2007 F.J. Fuentes InFraRed Imager and Dissector for Adaptive Optics.
VELO workshop, Amsterdam, april ‘00M.Ferro-Luzzi Difficulties with current mechanical design recent FEA results: to obtain sufficient stiffness of center.
PACS IIDR 01/02 Mar 2001 FPFPU Alignment1 D. Kampf KAYSER-THREDE.
Integral Field Spectrograph Eric PRIETO CNRS,INSU,France,Project Manager 11 November 2003.
Herschel Space ObservatoryPACS Science Verification ReviewMPE 22/23 June 2006 GJ / MPE 1 PACS Test Facility Capabilities – Cryogenics and OGSE Gerd Jakob.
SAM PDR1 S OAR Adaptive Module LGS LGSsystem Andrei Tokovinin SAM LGS Preliminary Design Review September 2007, La Serena.
LARP LHC PHASE II COLL RC1 TESTS - S. Lundgren 06 June 2006 No 1 /17 LARP Phase II Secondary Collimator RC1 Collimator Test Program Plan Forward Revised.
January 25, 2005GRETINA 2004 Review1 GRETINA 2004 Annual Review Steve Virostek Lawrence Berkeley National Lab Mechanical System.
SAXS/WAXS Conversion for Beamline Engineering Review.
Opto-Mechanics for SNAP at UM
Test Readiness Review 23 October 2003 CRAL - LYON.
Oct 17, 2001SALT PFIS Preliminary Design Review1 Southern African Large Telescope Prime Focus Imaging Spectrograph Mechanical Mechanism Design Michael.
Summary ( Cryomodule, Plug-compatible Interface) Norihito Ohuchi.
Survey, Alignment and Metrology Fabien Rey Pawel Garsztka ESS Survey, Alignment and Metrology Group.
Survey, Alignment and Metrology Fabien Rey Pawel Garsztka ESS Survey, Alignment and Metrology Group Interface Workshops for ESS Warm-Linac: ISrc - LEBT.
NIRSpec IFU Eric Prieto Final Presentation Definition Phase May, 11th – ESTEC.
Periscope Configuration
IFS prototype – PM3 LAM, 13/06/2003 Prototype testing at CRAL Tests at room temperature in the visible.
ENGINEERING DESIGN AND FABRICATION OF X-BAND ACCELERATING STRUCTURE TD24 WITH WFM Abstract To achieve high luminosity in CLIC, the accelerating structures.
PACS IBDR MPE 27/28 Feb 2002 AIV 1 PACS IBDR Test Cryostat and OGSE Gerd Jakob MPE.
Exit slit toroid, with horizontal steering servo-loop to slits monochromator, with mirror and grating scanning Beamline Mono residual steering effects.
Another Modular Focal Plane: Part 1 – Sub-modules Bruce C. Bigelow University of Michigan Department of Physics 5/17/04.
The Field Camera Unit Results from technical meeting S. Scuderi INAF – Catania.
STC "VOSKHOD", PROJECT "SPECTR-UV", JUNE 2006 Next slide Next slide Previous slide Possible layouts of Field Cameras.
IFU Management Meeting LAM – 15/10/04. Introduction (olf)
PACS IIDR 01/02 Mar 2001 Optical System Design1 N. Geis MPE.
EMC BWE Proto18 - Orsay Meeting 1 PANDA EMC BWE Proto18 Mikel Catania Goikoetxea, Javier Navarro Medrano, David Rodríguez Piñeiro, Yue Ma, Frank.
Cloudland Instruments Hawkeye Mechanical Design Snapshot Compiled April 8th, 2016.
FP420 Hybrid Mechanical Design Ray Thompson / Manchester Manchester Xmas O7 Ray Thompson Julian Freestone, Andy Elvin.
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme.
SNAP spectrograph demonstrator : AIT/AIV Cedric CERNA CNRS (IN2P3,INSU) FRANCE,
Integral Field Spectrograph Eric Prieto LAM. How to do 3D spectroscopy.
Astronomical Spectroscopic Techniques
Status of design and production of LEP connection cryostat
A. Vande Craen, C. Eymin, M. Moretti, D. Ramos CERN
Challenges of vacuum chambers with adjustable gap for SC undulators
IR Detector - Test cryostat : Machining
Slicer development Eric Prieto LAM.
The SNAP Integral Field Spectrograph Overview of the project
LumiCal mechanical design, integration with LDC and laser alignment
IR Detector - Test cryostat For IPNL - Shrinkage measurement at 120 K
SNAP spectrograph demonstrator : Test Plan
Hawkeye Mechanical Design Snapshot
An IFU slicer spectrometer for SNAP
iSHELL Design Review Cryostat & Optics Bench
Another Modular Focal Plane: Part 2 – FP assembly
Standardized CCD and MCT detector mounting configurations
Simplified Procedure Draft
Presentation transcript:

Integral Field Spectrograph Opto-mechanical concepts PIERRE KARST, JEAN-LUC GIMENEZ CPPM(CNRS),FRANCE

2 November 15 & 16, 2005 Pierre KARSTSummary  Requirements  General design  Opto-mechanical mount principle  References definition  Description of the units   Optical baffling studies  Cold test : preliminary lay out  Conclusion

3 November 15 & 16, 2005 Pierre KARST Requirements 1/2 Optical scheme : Beam geometry and active surfaces of the optical components = 350 to 1700 nm : Visible and IR detectors Respect of the alignment tolerance from 300 to 100 K Adjustment of the optical components and the detectors Optical components made of Zerodur (mirror) and BK7 (prism)

4 November 15 & 16, 2005 Pierre KARST Slicer unit Steering mirror unit Spectrograph unit Offner relay unit Detector unit Bench Requirements 2/2 Alignment tolerance GENERAL REQUIREMENT: COMPONENT  X =  Y=  Z= ± 0,1 mm Tilt Ox= Oy = ± 5 arcmin UNIT  X =  Y=  Z= ± 0,2 mm Tilt Ox= Oy = Oz = ± 5 arcmin  X =  Y=  Z= ± 0.02 mm

5 November 15 & 16, 2005 Pierre KARST Overview General design 1/5 Slicer unit Steering mirror unit Spectrograph unit Offner relay unit Detector unit Bench Support of the units Interface with external devices

6 November 15 & 16, 2005 Pierre KARST General design 2/5 Overall dimensions with the IR detector 630 mm 420 mm 210 mm

7 November 15 & 16, 2005 Pierre KARST General design 3/5 270 mm 160 mm 95 mm Slicer and spectrograph region (# SNAP spectro)

8 November 15 & 16, 2005 Pierre KARST General design 4/5 Visible test at room temperature Illumination module of the Proto 0 Demonstrator Optical table Support

9 November 15 & 16, 2005 Pierre KARST General design 5/5 InvarAluminiumTitaniumZerodurSiC CTE ( K)x Thermal 300 K (W/m/K) Specific heat (J/Kg/K) Young modulus (GPa) CostAAABC FabricationAAABC Choice material trade off: Compatibility with vaccum at low temperature (100 K) compatibility with Zerodur (Low CTE) Good alignment in the temperature range ( K) Good thermal properties high Young modulus Short allowed time = easy fabrication Low cost

10 November 15 & 16, 2005 Pierre KARST Opto-mechanical mount principle 1/6 Optical components : Rectangular mirror, Zerodur, 110x30x20 Cylindrical mirror, Zerodur,  26 to 34x10 Prism, BK7, mean thickness 10 mm, 26x26 Mount components : Frame and positioning parts, Invar. Clamping and screws : TBD Requirement in the range 300 to 100 K : Positioning tolerance : ± 0.1 mm ± 5 arcmin

11 November 15 & 16, 2005 Pierre KARST Opto-mechanical mount principle 2/6 Cylindrical mirrors : Plan contact with 3 points Centering with 2 small machined plans Mirror Elastic clamping Mirror mount Support

12 November 15 & 16, 2005 Pierre KARST Opto-mechanical mount principle 3/6 Rectangular mirror: Spring plungers Orientation Punctual contact Elastic clamps Plan contact Mirror

13 November 15 & 16, 2005 Pierre KARST Opto-mechanical mount principle 4/6 Mirror mount positioning: Stopper Spring plungers for the alignment Screws for fixation

14 November 15 & 16, 2005 Pierre KARST Opto-mechanical mount principle 5/6 Prism mount: 3 rotations are required. Positioning by 3 axis and screws on cantilever. 6 small pads 6 elastic clamps Prism

15 November 15 & 16, 2005 Pierre KARST Opto-mechanical mount principle 6/6 Prism mount: Position adjustment X Y Z X adjustment Z adjustment Y adjustment Centering of the axis < 10  m Accuracy of the angular adjustment < 3 arcmin  m screw Spring plunger

16 November 15 & 16, 2005 Pierre KARST References definition 1/2 Y Z O Y Z Y Z Y Z Y Z General reference: Active surface positions Origin = Slicer reference

17 November 15 & 16, 2005 Pierre KARST References definition 2/2 Accuracy of reference transfer with a CMM < 10  m  Positioning of the active surface < 40  m (Alignment tolerance = ± 0.1 mm) External surfaces Active surface Unit reference Positioning surfaces of the mirror Supporting surfaces of the mount Positioning and measurement of the actives surfaces respecting to the Unit reference

18 November 15 & 16, 2005 Pierre KARST Description of the units 1/8 Travel along the beam Slicer unit Steering mirror unit Spectrograph unit Offner relay unit Detector unit Bench

19 November 15 & 16, 2005 Pierre KARST Description of the units 2/8 Steering mirror support unit Steering mirror envelop Titanium support Pupil aperture Incoming beam Outgoing beam Z X Y Centering hole Locating hole Contact plan Shrinkage around the vertex of the mirror

20 November 15 & 16, 2005 Pierre KARST Description of the units 3/8 Slicer unit Z Y X Stack of slices Pupil mirrors Slit mirrors Incoming beam Outgoing beam

21 November 15 & 16, 2005 Pierre KARST Description of the units 4/8 Slicer unit Box and cover Made of Invar Mirror supporting blocks Made of Zerodur Mirror supporting blocks Made of Zerodur Pupil and slit mirror support Slice mirrors support The Zerodur assembly will be held by elastic clamps (TBD)

22 November 15 & 16, 2005 Pierre KARST Description of the units 5/8 Spectrograph unit Prism Camera mirror Collimator mirror Incoming beam Outgoing beam X Z Y Plan contact Orientation Stopper

23 November 15 & 16, 2005 Pierre KARST Description of the units 6/8 Offner relay unit Plan contact Orientation Stopper X Y Z Detector focal plan Offner primary mirror Offner secondary mirror Plane mirror Incoming beam

24 November 15 & 16, 2005 Pierre KARST Contact plan Fixation Description of the units 7/8 Visible detector Z X Y

25 November 15 & 16, 2005 Pierre KARST Description of the units 8/8 Bench Support of the unit Connection to the external devices Keeps the alignment specification (stiffness and thermal fluctuation) Contact plan Orientation Stopper Unit interface Cone Groove Flat

26 November 15 & 16, 2005 Pierre KARST Optical baffling studies

27 November 15 & 16, 2005 Pierre KARST Specific requirement: Vacuum < mbar Existing cryostat External illumination source unit: view port T° demonstrator < T° IR detector IR detector requirement: T° = 120 ± 5 K, stability 0.5 K Temperature fluctuation max < 1K/minute 1 short signal cable (20 cm) connected to a electrical board at room temperature Cold test: preliminary lay out 1/5 Diameter 180 mm 60 mm

28 November 15 & 16, 2005 Pierre KARST Cold test: preliminary lay out 2/5 Herschel cryostat View port Several available feedthroughs for the electrical output. Clean room It is equipped with two cryonegic heads

29 November 15 & 16, 2005 Pierre KARST Cold test: preliminary lay out 3/5 Overview Viewport Signal cable feedthrough Cryogenic devices

30 November 15 & 16, 2005 Pierre KARST Cold test: preliminary lay out 4/5 Overview avant le detecteur Signal cable Thermal baffling

31 November 15 & 16, 2005 Pierre KARST Cold test: preliminary lay out 5/5 IR detector on the demonstrator IR detector support Bench

32 November 15 & 16, 2005 Pierre KARSTConclusion This preliminary design meets the requirements Next steps, we have: - To finish the slicer unit concept - To detail the thermal studies - To define the optical baffling - To adapt the bench to the interfaces and thermal constraints

33 November 15 & 16, 2005 Pierre KARSTSpares Cut view of the mirror mount Alignment benches Herschel cryostat dimensions Mechanical description of the visible detector Slicer unit Shrinkage

34 November 15 & 16, 2005 Pierre KARST Alignment bench : spectrograph unit

35 November 15 & 16, 2005 Pierre KARST Alignment bench : Offner relay unit

36 November 15 & 16, 2005 Pierre KARST Cylindrical mirror mount

37 November 15 & 16, 2005 Pierre KARSTSpares Herschel cryostat : Dimensions

38 November 15 & 16, 2005 Pierre KARST Visible detector Mechanical description

39 November 15 & 16, 2005 Pierre KARST SLICER UNIT

40 November 15 & 16, 2005 Pierre KARST Tolerance for adjustment at room T° DescriptionDistance (mm) Shrinkage (mm) Required tolerance (mm) Tolerance for adjustment (mm) Slice mirror – pupil mirror ± (± 0.007) DescriptionDistance (mm) Shrinkage (mm) Required tolerance (mm) Tolerance for adjustment (mm) Spectro unit- Slicer unit ±0.2±0.16 Collimator - Prism ±0.1±0.036 Prism - Camera ±0.1±0.057 DescriptionDistance (mm) Shrinkage (mm) Required tolerance (mm) Tolerance for adjustment (mm) Spectro unit- Offner relay unit ±0.2±0.094 OPM - OSM ±0.1±0.068 DescriptionDistance (mm) Shrinkage (mm) Required tolerance (mm) Tolerance of adjustment (mm) Steering unit- Slicer unit ±0.2±0.12