Tutorial 7 Module 6.

Slides:



Advertisements
Similar presentations
Memory Management Unit
Advertisements

O PERATING I N P ROTECTED M ODE Prof.P.C.Patil Department of Computer Engg Matoshri College of Engg.Nasik M ICROPROCESSOR A RCHITECTURE.
Types of Code Segments Conforming Code Segment
Presented By Dr. Shazzad Hosain Asst. Prof. EECS, NSU
16.317: Microprocessor System Design I
Intel MP.
X86 segmentation, page tables, and interrupts 3/17/08 Frans Kaashoek MIT
ARM programmer’s model and assembler Embedded Systems Programming.
A ‘protected-mode’ exploration A look at the steps needed to build segment-descriptors for displaying a message while in protected-mode.
Microprocessor Systems Design I Instructor: Dr. Michael Geiger Fall 2012 Lecture 15: Protected mode intro.
Protected Mode. Protected Mode (1 of 2) 4 GB addressable RAM –( to FFFFFFFFh) Each program assigned a memory partition which is protected from.
Segmentation CS 537 – Introduction to Operating Systems.
UNIT 2 Memory Management Unit and Segment Description and Paging
Address Translation Mechanism of 80386
Memory Addressing in Linux  Logical Address machine language instruction location  Linear address (virtual address) a single 32 but unsigned integer.
Microprocessor system architectures – IA32 segmentation Jakub Yaghob.
The Pentium Processor.
CSC 660: Advanced Operating SystemsSlide #1 CSC 660: Advanced OS Memory Addressing / Kernel Modules.
Memory Addressing in Linux (Chap. 2, Understanding the Linux Kernel) J. H. Wang Oct. 20, 2008.
./a.out Having fun with system internals Facundo de la Cruz
System Address Registers/Memory Management Registers Four memory management registers are used to specify the locations of data structures which control.
80386DX.
Memory Addressing in Linux (Chap. 2 in Understanding the Linux Kernel) J. H. Wang Oct. 15, 2009.
1 i386 Memory Management Professor Ching-Chi Hsu 1998 年 4 月.
Linux Memory Management
The Microprocessor and Its Architecture A Course in Microprocessor Electrical Engineering Department University of Indonesia.
EFLAG Register of The The only new flag bit is the AC alignment check, used to indicate that the microprocessor has accessed a word at an odd.
80386DX. Programming Model The basic programming model consists of the following aspects: – Registers – Instruction Set – Addressing Modes – Data Types.
Memory Management CS Spring Overview Partitioning, Segmentation, and Paging External versus Internal Fragmentation Logical to Physical Address.
Segment Descriptor Segments are areas of memory defined by a programmer and can be a code, data or stack segment. In segments need not be all the.
1 Microprocessors CSE Protected Mode Memory Addressing Remember using real mode addressing we were previously able to address 1M Byte of memory.
Page Replacement Implementation Issues Text: –Tanenbaum ch. 4.7.
Information Security - 2. Other Registers EFLAGS – 32 Bit Register CFPFAFZFSFTFIFDFOFIO PL IO PL NTRFVM Bits 1,3,5,15,22-31 are RESERVED. 18: AC, 19:VIF,
Memory Management Unit and Segment Description and Paging
Information Security - 2. Descriptor Tables There are two descriptor tables – Global Descriptor Tables – Local Descriptor Tables The global descriptor.
Information Security - 2. Descriptor Tables Descriptors are stored in three tables: – Global descriptor table (GDT) Maintains a list of most segments.
Information Security - 2. CISC Vs RISC X86 is CISC while ARM is RISC CISC is Compiler’s heaven while RISC is Architecture’s heaven Orthogonal ISA in RISC.
contains 8086 processor and several additional functional chips: –clock generator –2 independent DMA channels –PIC –3 programmable 16-bit.
Privilege Check for Control Transfer(Code Access) Control transfers (except interrupts) are accomplished by the instructions JMP, CALL, and RET The "near"
Microprocessor Architecture
32- bit Microprocessor-Intel 80386
Lecture on Real Mode Memory Addressing
Descriptor Table & Register
Memory Management Paging (continued) Segmentation
16.317: Microprocessor System Design I
Electronic Computers M
Microprocessor Systems Design I
Microprocessor Systems Design I
Address Translation Mechanism of 80386
Protection UQ: Explain the protection mechanism of X86 Intel family microprocessor(10 Marks)
x86 segmentation, page tables, and interrupts
System Segment Descriptor
Page Replacement Implementation Issues
. - t !!l t. - 1f1f J - /\/\ - ' I __.
Tutorial 7 MODULE 6.
L Load Fullword.
Operating Modes UQ: State and explain the operating modes of X86 family of processors. Show the mode transition diagram highlighting important features.(10.
Memory Management Paging (continued) Segmentation
MICROPROCESSOR MEMORY ORGANIZATION
Page Replacement Implementation Issues
.. '.. ' 'i.., \. J'.....,....., ,., ,,.. '"'". ' · · f.. -··-·· '.,.. \...,., '.··.. ! f.f.
!'!!. = pt >pt > \ ___,..___,..
Tutorial No. 11 Module 10.
ВОМР Подмярка 19.2 Възможности за финансиране
Споразумение за партньорство
REGISTER ORGANIZATION OF 80386
CS-401 Computer Architecture & Assembly Language Programming
Assembly Language for Intel-Based Computers, 5th Edition
Memory Management Paging (continued) Segmentation
CS444/544 Operating Systems II Virtual Memory
Presentation transcript:

Tutorial 7 Module 6

Table for 80286 Processor - 80286 GDTR – 100000H

GDT Address Data 100008 00 82 01 FF 100010 20 100018 83 03 3F 100020 FC 0A 1F 100028 DF B0 100030 92 B1 0F 100038 F1 7B 100040 D2 7A 07 100048 9F A1 100050 D4 A3 7F 100058 100060 B3 50

LDT1 Address Data 010000 00 82 01 FF 010008 20 010010 83 03 3F 010018 FC 0A 1F 010020 DF B0 010028 92 B1 0F 010030 B2 7B 010038 D2 7A 07 010040 9F A1 010048 B3 A3 010050 010058 50

LDT2 Address Data 200000 00 82 01 FF 200008 20 200010 83 03 3F 200018 FC 0A 1F 200020 DF B0 200028 92 B1 0F 200030 B2 7B 200038 D2 7A 07 200040 A1 200048 B3 A3 200050 200058 50

Processor -80386 CR3 FF 00 00 00 Paging Enabled GDTR – 00 10 00 00

GDT Address Data 00100008 00 D0 82 01 FF 00100010 20 00100018 04 Do 83 03 3F 00100020 FC 0A 1F 00100028 DF B0 00100030 92 B1 0F 00100038 B2 7B 00100040 D2 7A 07 00100048 9F A1 00100050 B3 A3 7F 00100058 00100060 30 50

PD Address Data FF000000 01 00 FF000004 02 FF000008 03 FF00000C 04 05 FF000014 06 FF000018 08 FF00001C 0A FF000020 0B FF000024 0C FF000028 0E FF00002C 0F

PT Address Data 030008C0 10 00 030008C4 11 030008C8 12 030008CC 13 030008D0 14 030008D4 15 030008D8 16 030008DC 1A 030008E0 1B 030008E4 1C 030008E8 030008EC Address Data 03000000 21 00 03000004 22 03000008 23 0300000C 24 03000010 25 03000014 26 03000018 28 0300001C 2A 03000020 2B 03000024 2C 03000028 2D 0300002C 30 Q4 – physical address = A3 12 00 Q5- physical address = B1 12 34 Q6 – linear Address = 00 A3 00 34 Q3- physical address = 10 00 00 34

Descriptor - 80286 0000 0000 Access Rights Base Address B16 – B24 Limit L8 - L15 L0 – L7

Descriptor - 80386 Base Address B24 – B31 G D AV Limit L16 – L19 AV Limit L16 – L19 Access Rights B16 – B24 B8- B15 B0 – B7 L8 - L15 L0 – L7

Access rights byte format P DPL S E ED/C R/W A E ED/C R/W ? Data- Expands Upward – Read Only 1 Data- Expands Upward - Write Data - Expand Downward – Read Only Data- Expand Downward - Write Code – Ignore DPL – Execute Only Code – Ignore DPL – Read allowed Code – Abide DPL – Execute Only Code – Abide DPL – Read allowed