Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Infrared Based Wall Shear Stress Measurement Techniques J. Thermal Sci. Eng. Appl.

Slides:



Advertisements
Similar presentations
Date of download: 5/29/2016 Copyright © ASME. All rights reserved. From: A Study on the Optimization of an Air Dehumidification Desiccant System J. Thermal.
Advertisements

Date of download: 5/30/2016 Copyright © ASME. All rights reserved. From: A Resistance–Capacitance Model for Real-Time Calculation of Cooling Load in HVAC-R.
Date of download: 6/1/2016 Copyright © ASME. All rights reserved. From: Statistical Investigation of Air Dehumidification Performance by Aqueous Lithium.
Date of download: 6/3/2016 Copyright © ASME. All rights reserved. From: Comparison of the Straight Adiabatic Capillary Tube Expansion Devices Used in Refrigeration.
Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Heat Transfer and Pressure Drop Analysis of Chilled Water and Ice Slurry in a.
Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: A Two-Dimensional Numerical Investigation of the Hysteresis Effect on Vortex Induced.
Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: A Batchelor Vortex Model for Mean Velocity of Turbulent Swirling Flow in a Macroscale.
Date of download: 6/27/2016 Copyright © ASME. All rights reserved. From: Numerical Modeling of Regenerative Cooling System for Large Expansion Ratio Rocket.
Date of download: 7/2/2016 Copyright © ASME. All rights reserved. From: Effect of Tube Location Change on Heat Transfer Characteristics of Plain Plate.
Date of download: 7/9/2016 Copyright © ASME. All rights reserved. From: Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of.
Date of download: 7/12/2016 Copyright © ASME. All rights reserved. From: Computer Simulation of Drying of Food Products With Superheated Steam in a Rotary.
Date of download: 7/16/2016 Copyright © ASME. All rights reserved. From: Investigation of Cooling Process of a High-Temperature Hollow Cylinder in Moving.
Date of download: 9/17/2016 Copyright © ASME. All rights reserved. From: Effects of Swirl Velocities From Fan Assemblies Mounted on Lifting Surfaces J.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Oscillating Heat Transfer Correlations for Spiral-Coil Thermoacoustic Heat Exchangers.
Date of download: 9/19/2016 Copyright © ASME. All rights reserved. From: A Reduced-Order Model of the Mean Properties of a Turbulent Wall Boundary Layer.
Date of download: 9/19/2016 Copyright © ASME. All rights reserved. From: Detailed Heat Transfer Measurements Inside Rotating Ribbed Channels Using the.
Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Simulation and Optimization of Drying of Wood Chips With Superheated Steam in.
Date of download: 11/12/2016 Copyright © ASME. All rights reserved. From: An Open Loop Pulsating Heat Pipe for Integrated Electronic Cooling Applications.
Date of download: 9/26/2017 Copyright © ASME. All rights reserved.
From: Thermal-Hydraulic Performance of MEMS-based Pin Fin Heat Sink
Date of download: 10/7/2017 Copyright © ASME. All rights reserved.
Date of download: 10/8/2017 Copyright © ASME. All rights reserved.
Date of download: 10/8/2017 Copyright © ASME. All rights reserved.
From: Pressure Surge During Cryogenic Feedline Chilldown Process
Date of download: 10/11/2017 Copyright © ASME. All rights reserved.
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
From: Modeling Transmission Effects on Multilayer Insulation
Date of download: 11/6/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/10/2017 Copyright © ASME. All rights reserved.
Date of download: 11/11/2017 Copyright © ASME. All rights reserved.
Date of download: 11/12/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/15/2017 Copyright © ASME. All rights reserved.
Date of download: 12/2/2017 Copyright © ASME. All rights reserved.
Date of download: 12/16/2017 Copyright © ASME. All rights reserved.
Date of download: 12/17/2017 Copyright © ASME. All rights reserved.
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
From: Vapor Chamber Acting as a Heat Spreader for Power Module Cooling
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
From: Modeling a Phase Change Thermal Storage Device
Date of download: 12/25/2017 Copyright © ASME. All rights reserved.
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
From: Superior Performance of Nanofluids in an Automotive Radiator
Date of download: 1/1/2018 Copyright © ASME. All rights reserved.
Date of download: 1/22/2018 Copyright © ASME. All rights reserved.
Date of download: 11/30/2018 Copyright © ASME. All rights reserved.
Presentation transcript:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Infrared Based Wall Shear Stress Measurement Techniques J. Thermal Sci. Eng. Appl. 2011;3(3): doi: / Fundamental principle of the technique with details of the heated structure (left) and cooling curves for various free stream velocities at a fixed streamwise position (right) Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Infrared Based Wall Shear Stress Measurement Techniques J. Thermal Sci. Eng. Appl. 2011;3(3): doi: / Detailed view of the experimental setup with heated measurement area (gray) and points for reference measurements marked by a cross (left). Exemplary wall shear stress measurements for tripped and untripped flow (right). Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Infrared Based Wall Shear Stress Measurement Techniques J. Thermal Sci. Eng. Appl. 2011;3(3): doi: / Area ratio over wall shear stress for various Reynolds numbers and laminar and turbulent flow conditions (left). Mean deviation from the reference measurements for laminar and turbulent flow conditions (right). Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Infrared Based Wall Shear Stress Measurement Techniques J. Thermal Sci. Eng. Appl. 2011;3(3): doi: / Corrected laminar data and resulting mean wall shear stress deviations (left). Spatial deviation of the shear stress values from the reference measurements for two free stream velocities (right). Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Infrared Based Wall Shear Stress Measurement Techniques J. Thermal Sci. Eng. Appl. 2011;3(3): doi: / Setup for the visualization experiments with heatable areas (left) and flow topology of the flow around a wall mounted cylinder (right) Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Infrared Based Wall Shear Stress Measurement Techniques J. Thermal Sci. Eng. Appl. 2011;3(3): doi: / Visualization of the horseshoe vortex system (left). Comparison of infrared visualization and surface hotwire measurements (right). Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Infrared Based Wall Shear Stress Measurement Techniques J. Thermal Sci. Eng. Appl. 2011;3(3): doi: / Visualization of the cylinder top (left) and visualization of the cylinder circumference (right) Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Infrared Based Wall Shear Stress Measurement Techniques J. Thermal Sci. Eng. Appl. 2011;3(3): doi: / Sketch of a thermal tuft in two and three dimensions (left) and experimental setup for the thermal tuft sensor (right) Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Infrared Based Wall Shear Stress Measurement Techniques J. Thermal Sci. Eng. Appl. 2011;3(3): doi: / Infrared images of the temperature field around the sensor for four different heat flux values and a skin friction of τw = 0.7 N/m2 Figure Legend:

Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Infrared Based Wall Shear Stress Measurement Techniques J. Thermal Sci. Eng. Appl. 2011;3(3): doi: / Infrared images of the temperature field around the sensor for two different shear stress values and a heat flux of q = 0.25 W/mm2 (left). Calibration curves and shear stress angle for various heat flux values (right). Figure Legend: