WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 1 Observables and initial conditions for rotating and expanding fireballs T. Csörgő 1,2, I.Barna 1.

Slides:



Advertisements
Similar presentations
Duke University Chiho NONAKA in Collaboration with Masayuki Asakawa (Kyoto University) Hydrodynamical Evolution near the QCD Critical End Point June 26,
Advertisements

Effects of Bulk Viscosity on p T -Spectra and Elliptic Flow Parameter Akihiko Monnai Department of Physics, The University of Tokyo, Japan Collaborator:
First Results From a Hydro + Boltzmann Hybrid Approach DPG-Tagung, Darmstadt, , Hannah Petersen, Universität Frankfurt.
CERN May Heavy Ion Collisions at the LHC Last Call for Predictions Initial conditions and space-time scales in relativistic heavy ion collisions.
DNP03, Tucson, Oct 29, Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Hadron Yields, Hadrochemistry, and Hadronization.
A. ISMD 2003, Cracow Indication for RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Cracow, Poland Based on paper M.Ch., W. Florkowski nucl-th/ Characteristic.
Behind QGP Investigating the matter of the early Universe Investigating the matter of the early Universe Is the form of this matter Quark Gluon Plasma?
Sept WPCF-2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev Based on: Yu.S., I. Karpenko,
Flow Vorticity and Rotation in Peripheral HIC Dujuan Wang CBCOS, Wuhan, 11/05/2014 University of Bergen, Norway.
Máté Csanád, Imre Májer Eötvös University Budapest WPCF 2011, Tokyo.
KROMĚŘĺŽ, August 2005WPCF Evolution of observables in hydro- and kinetic models of A+A collisions Yu. Sinyukov, BITP, Kiev.
Λ Polarization in an Exact rotating and expanding model for peripheral heavy ion reactions Yilong Xie NorSAC-2015 Department of Physics and Technology,
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
21th Epiphany Conference, Cracow, Poland, 2015/01/09 Csörgő, T. 1 Total, inelastic and elastic cross-sections of high energy pp, pA and eA collisions in.
Longitudinal de-correlation of anisotropic flow in Pb+Pb collisions Victor Roy ITP Goethe University Frankfurt In collaboration with L-G Pang, G-Y Qin,
Two particle correlation method to Detect rotation in HIC Dujuan Wang University of Bergen Supervisor: Laszlo P. Csernai.
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
Jaipur February 2008 Quark Matter 2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev (with participation.
Conical Flow induced by Quenched QCD Jets Jorge Casalderrey-Solana, Edward Shuryak and Derek Teaney, hep- ph/ SUNY Stony Brook.
Nuclear deformation in deep inelastic collisions of U + U.
T. Zimányi'75, Budapest, 2007/7/2 1 T. Csörgő, M. Csanád and Y. Hama MTA KFKI RMKI, Budapest, Hungary ELTE University, Budapest, Hungary USP,
Relativistic Hydrodynamics T. Csörgő (KFKI RMKI Budapest) new solutions with ellipsoidal symmetry Fireball hydrodynamics: Simple models work well at SPS.
T. KSU, USA, 2009/01/23 1 Csörgő, Tamás MTA KFKI RMKI, Budapest, Hungary High temperature superfluidity in Introduction: “RHIC Serves.
Zagreb, Croatia, 2015/04/20 Csörgő, T. 1 New exact solutions of hydrodynamcs and search for the QCD Critical Point T. Csörgő 1,2 with I.Barna 1 and M.
Zimányi Winter School, 2013/12/05 Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I.
Effects of bulk viscosity in causal viscous hydrodynamics Jianwei Li, Yugang Ma and Guoliang Ma Shanghai Institute of Applied Physics, CAS 1. Motivation.
2+1 Relativistic hydrodynamics for heavy-ion collisions Mikołaj Chojnacki IFJ PAN NZ41.
LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions.
Koichi Murase A, Tetsufumi Hirano B The University of Tokyo A, Sophia University B Hydrodynamic fluctuations and dissipation in an integrated dynamical.
Does HBT interferometry probe thermalization? Clément Gombeaud, Tuomas Lappi and J-Y Ollitrault IPhT Saclay WPCF 2009, CERN, October 16, 2009.
Partial thermalization, a key ingredient of the HBT Puzzle Clément Gombeaud CEA/Saclay-CNRS Quark-Matter 09, April 09.
Masashi Kaneta, First joint Meeting of the Nuclear Physics Divisions of APS and JPS 1 / Masashi Kaneta LBNL
T. WPCF’06, Sao Paulo, 2006/9/10 1 T. Csörgő, M. Csanád and M. Nagy MTA KFKI RMKI, Budapest, Hungary Anomalous diffusion of pions at RHIC Introduction:
T. Csörgő 1,2 Scaling properties of elliptic flow in nearly perfect fluids 1 MTA KFKI RMKI, Budapest, Hungary 2 Department of.
WPCF-2005, Kromirez A. Ster Hungary 1 Comparison of emission functions in h+p, p+p, d+A, A+B reactions A. Ster 1,2, T. Csörgő 2 1 KFKI-RMKI, 2 KFKI-MFA,
Results from an Integrated Boltzmann+Hydrodynamics Approach WPCF 2008, Krakau, Jan Steinheimer-Froschauer, Universität Frankfurt.
Two freeze-out model for the hadrons produced in the Relativistic Heavy-Ion Collisions. New Frontiers in QCD 28 Oct, 2011, Yonsei Univ., Seoul, Korea Suk.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
R. Lednicky: Joint Institute for Nuclear Research, Dubna, Russia I.P. Lokhtin, A.M. Snigirev, L.V. Malinina: Moscow State University, Institute of Nuclear.
Hydrodynamic Flow from Fast Particles Jorge Casalderrey-Solana. E. V. Shuryak, D. Teaney SUNY- Stony Brook.
Mean Field Effect on J/psi Production in Heavy Ion Collisions Baoyi Chen Physics Department Tsinghua University Cooperators: Kai Zhou Yunpeng Liu Pengfei.
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Budapest, 4-9 August 2005Quark Matter 2005 HBT search for new states of matter in A+A collisions Yu. Sinyukov, BITP, Kiev Based on the paper S.V. Akkelin,
PhD student at the International PhD Studies Institute of Nuclear Physics PAN Institute of Nuclear Physics PAN Department of Theory of Structure of Matter.
Understanding the rapidity dependence of v 2 and HBT at RHIC M. Csanád (Eötvös University, Budapest) WPCF 2005 August 15-17, Kromeriz.
Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic.
Particle emission in hydrodynamic picture of ultra-relativistic heavy ion collisions Yu. Karpenko Bogolyubov Institute for Theoretical Physics and Kiev.
Japanese Physics Society meeting, Hokkaido Univ. 23/Sep/2007, JPS meeting, Sapporo, JapanShinIchi Esumi, Inst. of Physics, Univ. of Tsukuba1 Collective.
T. Csörgő 1,2 for the PHENIX Collaboration Femtoscopic results in Au+Au & p+p from PHENIX at RHIC 1 MTA KFKI RMKI, Budapest,
Global and Collective Dynamics at PHENIX Takafumi Niida for the PHENIX Collaboration University of Tsukuba “Heavy Ion collisions in the LHC era” in Quy.
PHENIX Results from the RHIC Beam Energy Scan Brett Fadem for the PHENIX Collaboration Winter Workshop on Nuclear Dynamics 2016.
A generalized Buda-Lund model M. Csanád, T. Csörgő and B. Lörstad (Budapest & Lund) Buda-Lund model for ellipsoidally symmetric systems and it’s comparison.
Soft physics in PbPb at the LHC Hadron Collider Physics 2011 P. Kuijer ALICECMSATLAS Necessarily incomplete.
Fluctuations, Instabilities and Collective Dynamics L. P. Csernai 1 and H. Stöcker 2 1 Institute of Physics and Technology, University of Bergen, Allegaten.
A. Ster A. Ster 1, T. Csörgő 1,2, M. Csanád 3, B. Lörstad 4, B. Tomasik 5 Oscillating HBT radii and the time evolution of the source 200 GeV Au+Au data.
Chiho Nonaka QM2009 Nagoya University Chiho NONAKA March 31, Matter 2009, Knoxville, TN In collaboration with Asakawa, Bass, and Mueller.
HBT results from a rescattering model Tom Humanic Ohio State University WPCF 2005 August 17, 2005.
Elliptic flow from initial states of fast nuclei. A.B. Kaidalov ITEP, Moscow (based on papers with K.Boreskov and O.Kancheli) K.Boreskov and O.Kancheli)
Hydro + Cascade Model at RHIC
New solutions of fireball hydrodynamics with shear and bulk viscosity
Bulk viscosity in heavy ion collisions
Collective Dynamics at RHIC
Effects of Bulk Viscosity at Freezeout
Effects of Bulk Viscosity on pT Spectra and Elliptic Flow Coefficients
Differential HBT method to detect rotation
GLOBAL POLARIZATION OF QUARKS IN NON-CENTRAL A+A COLLISIONS
Strong Magnetic Fields in HIC
Spectral shapes in pp collisions
Presentation transcript:

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 1 Observables and initial conditions for rotating and expanding fireballs T. Csörgő 1,2, I.Barna 1 and M. I. Nagy 3 1 Wigner Research Center for Physics, Budapest, Hungary 2 KRF, Gyöngyös, Hungary 3 ELTE, Budapest, Hungary Introduction Introduction Non-relativistic hydro equations Rotating and expanding fireball solutions Dynamics Observables and initial conditions: Single particle spectra, elliptic flow, HBT radii Summary arXiv: arXiv: in preparation

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 2 Motivation: initial angular momentum Motivation: initial angular momentum Conserved quantities: important in heavy ion collisions also. L. Cifarelli, L.P. Csernai, H. Stöcker, EPN 43/22 (2012) p. 91 M. I. Nagy, Phys. Rev. C83 (2011) Phys. Rev. C83 (2011) T. Csörgő and M. I. Nagy, Phys.Rev. C89 (2014) 4, Phys.Rev. C89 (2014) 4,

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 3 Hydrodynamics: basic equations Hydrodynamics: basic equations Basic equations of non-rel hydrodynamics: Euler equation needs to be modified for lattice QCD EoS: no „n”. Use basic thermodynamical relations for lack of conserved charge (baryon free region)

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 4 Rewrite for v, T and (n, or  ) Rewrite for v, T and (n, or  ) lattice QCD EoS: modification of the dynamical equations:

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 5 Ansatz for rotation and scaling Ansatz for rotation and scaling The case without rotation: known self-similar solutions T. Cs, hep-ph/ S. V. Akkelin, T. Cs et al, hep-ph/ … Let’s add ω ≠0, let’s rotate! First good news: scaling variable remains good → a hope to find ellipsoidal rotating solutions!

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 6 Cs. T and M. I. Nagy, arXiv: , PRC89 (2014) 4, arXiv: From self-similarity Ellipsoidal ->spheroidal time dependence of R and  coupled Conservation law! Common properties of solutions Common properties of solutions

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 7 Solutions for conserved particle n Solutions for conserved particle n T. Cs. and M.I. Nagy, arXiv: , PRC89 (2014) 4, arXiv: Similar to irrotational case: Family of self-similar solutions, T profile free T. Cs, hep-ph/ hep-ph/ but: rotation leads to increased transverse acceleration!

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 8 Role of temperature profiles Role of temperature profiles Expanding shells of fire: large temperature gradient, but small radial flow T. Cs, hep-ph/ , APPBhep-ph/ Typical: h+p (NA22) p+p (STAR, ALICE) See: A. Bialas and W. Florkowski

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 9 1B: conserved n, T dependent e/p 1B: conserved n, T dependent e/p Rotation: increases the transverse acceleration. Only if T is T(t): Gaussian density profiles! But, a more general EoS, similar to T. Cs. et al, hep-ph/

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 10 n=0, lattice QCD type EoS n=0, lattice QCD type EoS Two different class of solutions: p/e = const  arbitrary  profile or p/e = f(T)  Gaussian  profile only Notes: increased acceleration (no „n” vs conserved „n”)

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 11 Observables from rotating solutions Observables from rotating solutions Note: (r’, k’) in fireball frame rotated wrt lab frame (r,k) Note: from now on, rotation in the (X,Z) impact parameter plane !

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 12 Role of EoS on acceleration Role of EoS on acceleration Lattice QCD type Eos is explosive Tilt angle  integrates rotation in (X,Z) plane: sensitive to EoS!

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 13 Spherical intital conditions Spherical intital conditions X 0 = Y 0 = Z 0 = 5 fm... X 0 = Y 0 = Z 0 = 0 T 0 = 350 MeV  0 increases from 0 to 0.1 c/fm Spheroidal symmetry, With rotation around y axis X = Z = R >< Y

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 14 Dynamics of evolution: Sizes Dynamics of evolution: Sizes

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 15 Dynamics of evolution: T, vorticity Dynamics of evolution: T, vorticity Temperature decreases faster due to rotation Angular velocity  decreases quickly Vorticity ~ angular velocity

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 16 Single particle spectra Single particle spectra In the rest frame of the fireball: Rotation increases effective temperatures both in the longitudinal and impact parameter direction in addition to Hubble flows lQCD EoS: observables calculable if ~ n (Landau freeze-out)

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 17 Directed, elliptic and other flows Directed, elliptic and other flows Note: model is fully analytic As of now, only X = Z = R(t) spheroidal solutions are found → vanishing odd order flows at y=0 For fluctuations, see: M. Csanád and A. Szabó, Phys.Rev. C90 (2014) 5, From particle spectra → flow coefficents v n

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 18 Dynamics of elliptic flow Dynamics of elliptic flow

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 19 Reminder: Universal w scaling of v 2 Reminder: Universal w scaling of v 2 Rotation does not change v2 scaling, but it modifies radial flow Black line: Buda-Lund prediction from 2003 nucl-th/ Comparision with data: nucl-th/ v 2 data depend on: particle mass m, centrality %, energy √s, rapidity y, p t

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 20 Details of universal w scaling of v 2 nucl-th/

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 21 HBT radii for rotating spheroids HBT radii for rotating spheroids Rotation terms add to radial flow, same m dependence → Rotation decreases HBT radii similarly to Hubble flow. Diagonal Gaussians in natural frame Same effect found numerically: S. Velle, S. Mehrabi Pari, L.P. Csernai, arxiv: arxiv:

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 22 HBT radii in the lab frame HBT radii in the lab frame HBT radii without ω: But spheriodal symmetry of the solution Makes several cross terms vanish → need for ellipsoidal solutions

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 23 HBT radii in the lab frame HBT radii in the lab frame HBT radii without ω: But spheriodal symmetry of the solution Makes several cross terms vanish → need for ellipsoidal solutions HBT for ω, X=Y=R:

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 24 Dynamics of HBT radii Dynamics of HBT radii

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 25 Observables calculated Effects of rotation and flow have same mass dependence Spectra: slope increases v 2 : universal w scaling remains valid HBT radii: Decrease with mass intensifies Even for spherical expansions: v 2 from rotation. Picture: vulcano How to detect the rotation? Summary for hydro solutions

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 26 Observables calculated Effects of rotation and flow have same mass dependence Spectra: slope increases v 2 : universal w scaling remains valid HBT radii: Decrease with mass intensifies Even for spherical expansions: v 2 from rotation. Picture: vulcano How to detect the rotation? Summary for hydro solutions

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 27 Thank you for your attention! Thank you for your attention! Questions? Questions?

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 28 Backup slides – Discussion Backup slides – Discussion

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 29 First integrals: Hamiltonian motion First integrals: Hamiltonian motion 1A: n is conserved 2A: n is not conseerved Angular momentum conserved Energy in rotation → 0

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 30 Rotating 3d ellipsoid X Y Z Rotating 3d ellipsoid X ≠ Y ≠ Z

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 31 Scaling variables for X Y Z Scaling variables for X ≠ Y ≠ Z First good news: scaling variable remains good, Ds = 0: → a hope to find rotating 3d ellipsoidal solutions, too!

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 32 Solution for X Y Z Solution for X ≠ Y ≠ Z First 3d ellipsoidal exact hydro solution: lQCD EoS can be co-variad with the initial condition → hadronic final state may be the same

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 33 Single particle spectra Single particle spectra Expectation for tilted sources: tilted elliptical specra ~ OK, but:

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 34 Directed, elliptic and other flows Directed, elliptic and other flows From the single particle spectra → flow coefficents v n

WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 35 HBT radii in the lab frame HBT radii in the lab frame HBT radii without ω: spheriodal symmetry of the hydro solution  several cross terms vanish  need for ellipsoidal solutions HBT for ω, X=Y=R: