Markus Nielbock (MPIA) – Herschel/PACS DP Workshop Herschel DP Workshop PACS Photometer Flux Calibration and Point Source Photometry Markus Nielbock (MPIA.

Slides:



Advertisements
Similar presentations
A Crash Course in Radio Astronomy and Interferometry: 4
Advertisements

The PACS Status Herschel PV Mid-Term Review ESAC, September 1, Herschel Performance Verification Mid-Term Review PACS Status: Overview Markus Nielbock.
FMOS Observations and Data 14 January 2004 FMOS Science Workshop.
Stellar Linearity Test Jason Surace (Spitzer Science Center)
Bruno Altieri September # 1 PACS photometer pipeline overview Bruno Altieri (ESA/HSC)
Processing of exoplanet full field images Farid Karioty CoRoT Week 12/06/2005.
Memorandam of the discussion on FMOS observations and data kicked off by Ian Lewis Masayuki Akiyama 14 January 2004 FMOS Science Workshop.
PACS SOVT-2 (SIMS) and CAPs development MPIA PACS ICC Meeting #32 1 st – 3 rd April 2009, MPE Garching Markus Nielbock (MPIA)
PACS NHSC SPIRE Point Source Spectroscopy Webinar 21 March 2012 David Shupe, Bernhard Schulz, Kevin Xu on behalf of the SPIRE ICC Extracting Photometry.
PACS Page 1 NHSC Data Processing Workshop – Pasadena Sept 10-14, 2012 SPIRE Spectrometer Data Reduction: Mapping Observations Nanyao Lu NHSC/IPAC (On behalf.
PACS FM-ILT SPECTROMETER SPATIAL CALIBRATION A. Contursi (H. Feuchtgruber) PACS Science Verification Review – 8/9 November 2007 MPE-Garching.
PACS NHSC Data Processing Workshop – Pasadena 26 th - 30 th Aug 2013 Photometer Extended Source Photometry Bernhard Schulz NHSC/IPAC on behalf of the SPIRE.
1 NHSC PACS NHSC/PACS Web Tutorials Running PACS photometer pipelines PACS-202 (for Hipe 9.0) Level 0 to Level 2 processing: From raw data to calibrated.
Page 1 PACS NHSC Data Processing Workshop – Pasadena 26 th - 30 th Aug 2013 Overview of SPIRE Photometer Pipeline Kevin Xu NHSC/IPAC on behalf of the SPIRE.
1 NHSC PACS NHSC/PACS Web Tutorials Running PACS photometer pipelines PACS-202 (for Hipe 8.0) Level 0 to Level 2 processing: From raw data to calibrated.
- page 1 NHSC – DP workshop – Feb – N. Billot PACS PACS Photometer Standard Pipeline Level 0 to Level 1 processing: From raw to calibrated data cubes.
PACS Spectrometer Spatial Calibration plan in PV phase A.Contursi D. Lutz and U. Klaas.
 PLATO PLAnetary Transits & Oscillations of stars Data onboard treatment PPLC study February 2009 on behalf of Reza Samadi for the PLATO data treatment.
- page 1 NHSC – DP workshop – Feb – N. Billot PACS PACS Photometer Standard Pipeline Level 1 to Level 2 processing: How to make a map for point source.
PACS Hitchhiker’s Guide to Herschel Archive Workshop – Pasadena 6 th - 10 th Oct 2014 Roberta Paladini NHSC/IPAC Photometry Guidelines for PACS data.
PACS Hitchhiker’s Guide to Herschel Archive Workshop – Pasadena 6 th - 10 th Oct 2014 Roberta Paladini NHSC/IPAC PACS photometer maps: several flavors.
PACS Hitchhiker’s Guide to Herschel Archive Workshop – Pasadena 6 th - 10 th Oct 2014 The PACS Photometer: Overview and Products Roberta Paladini NHSC/IPAC.
1 NHSC PACS NHSC/PACS Web Tutorials Running PACS photometer pipelines PACS-402 (for Hipe 12.0) Level 1 to Level 2 processing: The JScanam pipeline Prepared.
PACS NHSC Data Processing Workshop – Pasadena 10 th - 14 th Sep 2012 Measuring Photometry from SPIRE Observations Presenter: David Shupe (NHSC/IPAC) on.
Counting individual galaxies from deep mid-IR Spitzer surveys Giulia Rodighiero University of Padova Carlo Lari IRA Bologna Francesca Pozzi University.
1 NHSC PACS NHSC/PACS Web Tutorials Running PACS photometer pipelines PACS-201 (for Hipe 12.0) Level 1* to Level 2 processing: The High-Pass Filter pipeline.
PACS SVR 22/23 June 2006 Scientific/Performance Requirements1 PACS Science and Performance Requirements A. Poglitsch.
Page 1 PACS NHSC Webinar: New SPIRE Features in HIPE 10 6 th March 2013, Pasadena What’s New in SPIRE Photometer Pipeline in HIPE 10 Kevin Xu NHSC/IPAC.
April 2001 OPTICON workshop in Nice 1 The PSF homogenization problem in large imaging surveys Emmanuel BERTIN (TERAPIX)
PACS Page 1 NHSC Workshop on HSA Data Oct 6-10, 2014 SPIRE Spectrometer Data Reduction: Special Cases Nanyao Lu NHSC/IPAC (On behalf of the SPIRE ICC,
PACS Hitchhiker’s Guide to Herschel Archive Workshop – Pasadena 6 th - 10 th Oct 2014 SPIRE Broad-Band Photometry Extraction Bernhard Schulz (NHSC/IPAC)
PACS Hitchhiker’s Guide to Herschel Archive Workshop – Pasadena 6 th - 10 th Oct 2014 The PACS Spectrometer: Overview and Products Roberta Paladini NHSC/IPAC.
Page 1 PACS NHSC Webinar: New SPIRE Features in HIPE th Nov 2012, Pasadena Update on SPIRE Photometer Pipeline Kevin Xu NHSC/IPAC on behalf of the.
PVPhotFlux PACS Photometer photometric calibration MPIA PACS Commissioning and PV Phase Plan Review 21 st – 22 nd January 2009, MPE Garching Markus Nielbock.
- page 1 NHSC – DP workshop – Feb – N. Billot PACS Deglitching PACS Photometer Data Presentation based on tutorial PACS-402.
PACS ICC Readiness Review MPE, July 3/ PACS Photometer PV Phase Plan 1 Status Report M. Nielbock: PACS PHOT PV Phase Plan Markus Nielbock (MPIA)
CEA DSM Dapnia SAp Flux calibration of the Photometer Koryo Okumura, Marc Sauvage, Nicolas Billot, Bertrand Morin DSM/DAPNIA/Sap.
Data Processing Workshop NHSC, Pasadena, CA 02 – 04 February 2011 Stephan Ott VG #1 PACS Overview and new developments in.
NHSC PACS PACS Photometry and Errors Estimate Roberta Paladini (NSHC/Caltech) R. Paladini NHSC Archive Data Processing Workshop – August 26 th – 30 th.
PACS ICC Meeting #41 ESAC, 6/7 November 2012POP Calibration GoalsE. Sturm Post-Operations Calibration Goals E. Sturm.
PACS NHSC Data Processing Workshop Aug 26-30, 2013 Page 1 SPIRE Spectrometer Data: Calibration Updates, User Data Reprocessing, and Other Issues Nanyao.
Page 1 PACS NHSC Data Processing Workshop – Pasadena 26 th - 30 th Aug 2013 Issues with Photometer Data & How to Resolve them with HIPE Tools Kevin Xu.
PACS Page 1 NHSC Data Processing Workshop – Pasadena Aug 26-30, 2013 SPIRE Spectrometer Data Reduction: Mapping Observations Nanyao Lu NHSC/IPAC (On behalf.
1 NHSC PACS NHSC/PACS Web Tutorials Running PACS photometer pipelines PACS-402 (for Hipe 13.0) Level 1 to Level 2.5 processing: The JScanam pipeline Prepared.
PACS page 1 NHSC SPIRE Data Processing Webinars 8 th Feb 2012 PACS page 1 Overview of SPIRE Photometer Pipeline C. Kevin Xu (NHSC/IPAC)
PACS ICC Readiness Review MPE, July 3/ Extended-DP 1/13 E. Sturm: Extended-DP Eckhard Sturm.
PACS page 1 NHSC SPIRE Data Processing Webinars 7 th March 2012 PACS page 1 SPIRE Photometer Map Making C. Kevin Xu (NHSC/IPAC)
New SPIRE features in HIPE 9.1 NHSC; Nov 28, 2012 PACS Page 1 What’s New in HIPE 9.1 ( SPIRE FTS) Nanyao Lu NHSC/IPAC (on behalf of the SPIRE ICC)
- page 1 PACS Phil Appleton on behalf of the NHSC/HSC and the PACS ICC ; especially Bart Vandenbussche and Pierre Royer (KUL Belgium) Instrument Performance.
In conclusion the intensity level of the CCD is linear up to the saturation limit, but there is a spilling of charges well before the saturation if.
1 NHSC PACS NHSC/PACS Web Tutorials Running PACS photometer pipelines PACS-403 (for Hipe 13.0) Level 1 to Level 2.5 processing: The Unimap pipeline Prepared.
Markus Nielbock (MPIA) – Herschel Pointing PACS ICC Meeting #38 Herschel Pointing Summary and Recent Developments Markus Nielbock (MPIA Heidelberg) with.
PACS Hitchhiker’s Guide to Herschel Archive Workshop – Pasadena 6 th – 10 th Oct 2014 Overview of SPIRE Photometer Data Reduction Pipeline Kevin Xu NHSC/IPAC.
Markus Nielbock (MPIA) – PACS Photometer Flux Calibration Herschel Calibration Workshop PACS Photometer Flux Calibration: Update Markus Nielbock (MPIA.
Markus Nielbock (MPIA) – PACS Calibration Status Report Herschel Calibration Steering Group Meeting #24 PACS Calibration Status Report Markus Nielbock.
Markus Nielbock (MPIA) – PACS Photometer Flux Calibration EPOS Meeting PACS Photometer Flux Calibration Current Plans Markus Nielbock MPIA, 22 th February.
Markus Nielbock (MPIA) – PACS Point Source AOT Pipeline Herschel Science Demonstration Phase Data Processing Workshop PACS Point Source AOT Pipeline Tutorial.
HCalSG meeting #37 Calibration updates: Asteroids T. G. Müller (MPE Garching) Publication: Far-infrared photometric observations of the outer planets and.
SPIRE Flux Calibration: Implementation
Herschel Calibration Workshop
photometry and spectroscopy with PACS
Markus Nielbock studied physics in Düsseldorf and Bochum
PACS Calibration Status Report
JWST Pipeline Overview
PACS / SPIRE cross-calibration on prime fidicial standard stars
PACS ICC Meeting #41 PACS Photometer
Markus Nielbock (MPIA Heidelberg)
Fabio de Oliveira Fialho Michel Auvergne
What’s New in HIPE 10.0 (SPIRE FTS)
Modern Observational/Instrumentation Techniques Astronomy 500
Presentation transcript:

Markus Nielbock (MPIA) – Herschel/PACS DP Workshop Herschel DP Workshop PACS Photometer Flux Calibration and Point Source Photometry Markus Nielbock (MPIA Heidelberg) Thomas Müller (MPE Garching) on behalf of the PACS ICC ESAC, 21 st February 2012

PACS Photometer PS Calibration & Photometry Overview Markus Nielbock (MPIA) – Herschel/PACS DP Workshop

PACS Photometer PS Calibration & Photometry Flux calibration: General remarks ● flux calibration based on scan map observations of 5 prime fiducial stars

PACS Photometer PS Calibration & Photometry Flux calibration: General remarks

PACS Photometer PS Calibration & Photometry Flux calibration: General remarks ● flux calibration based on scan map observations of 5 prime fiducial stars ● model uncertainty amounts to 5% throughout ● aperture photometry with aperture correction (PSF template: Vesta, Mars) ● colour corrections: 1.016, 1.033, at 70, 100, 160 µm ● all prime standards are in the linear flux regime ● secondary targets (faint stars, asteroids, planets) ● observed for consistency and extension of flux range Markus Nielbock (MPIA) – Herschel/PACS DP Workshop calTree = getCalTree() resp = calTree.refs["photometer"].product.refs["responsivity"].product resp70 = resp["blue"]["Responsivity"] print resp70 calTree = getCalTree() resp = calTree.refs["photometer"].product.refs["responsivity"].product resp70 = resp["blue"]["Responsivity"] print resp70

PACS Photometer PS Calibration & Photometry Flux calibration: 70 µm Markus Nielbock (MPIA) – Herschel/PACS DP Workshop

PACS Photometer PS Calibration & Photometry Flux calibration: 100 µm Markus Nielbock (MPIA) – Herschel/PACS DP Workshop

PACS Photometer PS Calibration & Photometry Flux calibration: 160 µm improved data processing Markus Nielbock (MPIA) – Herschel/PACS DP Workshop

PACS Photometer PS Calibration & Photometry Flux calibration: Results ● flux calibration based on scan map observations of 5 prime fiducial stars ● scan-map: 160 µm fluxes might be underestimated by 2% ● fluxes of prime calibrators in PACS-P scan-map observations consistent with models within: ● 3%, 3%, 5% at 70, 100, 160 µm (weighted by calibrator, not by individual observation) ● no NIR leakage; all targets are consistent irrespective of temperature ● extracted fluxes are influenced at a level of a few percent by: ● cross-talk, highpass filtering, source masking, deglitching, etc. Markus Nielbock (MPIA) – Herschel/PACS DP Workshop

PACS Photometer PS Calibration & Photometry Non-linearity correction Markus Nielbock (MPIA) – PACS Photometer Flux Calibration ● based on pre-flight ground calibration ● non-linearity corrections of the order of 10% for signals around 60 Jy/pixel ● → small effect (0-15%) for brightest calibration sources (> 100 Jy per point source) ● flux calibrators affected: ● planets: Uranus, Neptune (5-15%) ● bright asteroids: Ceres, Pallas, Vesta (0-5%) ● shifts all objects into a ± 5% consistency range ● independent of gain setting ● is implemented in HIPE 8 (on frames, Level 1): ● photNonLinearityCorrection() calTree = getCalTree() nLin = calTree.refs["photometer"].product.refs["nonLinearCoef"].product nLin70 = nLin[“blue”] calTree = getCalTree() nLin = calTree.refs["photometer"].product.refs["nonLinearCoef"].product nLin70 = nLin[“blue”]

PACS Photometer PS Calibration & Photometry Non-linearity correction: Verification 100 µm Markus Nielbock (MPIA) – PACS Photometer Flux Calibration Neptun e

PACS Photometer PS Calibration & Photometry Non-linearity correction: Verification 100 µm Markus Nielbock (MPIA) – PACS Photometer Flux Calibration Neptun e

PACS Photometer PS Calibration & Photometry Aperture photometry Markus Nielbock (MPIA) – PACS Photometer Flux Calibration ● aperture photometry done with: annularSkyAperturePhotometry() ● GUI version available; script version more useful for parameter control and extraction ● provides source centroiding, however not very reliable → source fitting in previous step ● GUI version: sourceFitting(), but not very robust → cannot be reliably automated ● script version based on SourceFitTask() works very well for single point sources, ● see task definition mapSourceFitter() in Ipipe script L3_pointSourceAperturePhotometry.py ● aperture photometry with background subtraction ● error estimate not trustworthy → correlated noise ● alternative method explained later

PACS Photometer PS Calibration & Photometry Aperture correction Markus Nielbock (MPIA) – PACS Photometer Flux Calibration ● based on PSF templates Vesta and Mars ● correction factors from “encircled energy fraction” ● depends on version of flux calibration ● applied by HIPE task: ● photApertureCorrectionPointSource() ● Caution! Aperture photometry product is overwritten. calTree = getCalTree() apCorr = calTree.refs["photometer"].product.refs["apertureCorrection"].product apCorr_r = apCorr["fm6ApertureRadius"].data apCorr70 = apCorr["fm6BandBlue"].data apCorr100= apCorr["fm6BandGreen"].data apCorr160= apCorr["fm6BandRed"].data p=PlotXY(batch=1) p.getLegend().setVisible(1) p.setTitleText("PACS Aperture Correction") l1=LayerXY(apCorr_r,apCorr70) l1.setColor(java.awt.Color.blue) l1.setName("blue") p.addLayer(l1) l2=LayerXY(apCorr_r,apCorr100) l2.setColor(java.awt.Color.green) l2.setName("green") p.addLayer(l2) l3=LayerXY(apCorr_r,apCorr160) l3.setColor(java.awt.Color.red) l3.setName("red") p.addLayer(l3) p.setXrange([0,60]) p.setXtitle('Radius ["]') p.setYrange([0,1]) p.setYtitle('Encircled Energy Fraction') p.batch=0 calTree = getCalTree() apCorr = calTree.refs["photometer"].product.refs["apertureCorrection"].product apCorr_r = apCorr["fm6ApertureRadius"].data apCorr70 = apCorr["fm6BandBlue"].data apCorr100= apCorr["fm6BandGreen"].data apCorr160= apCorr["fm6BandRed"].data p=PlotXY(batch=1) p.getLegend().setVisible(1) p.setTitleText("PACS Aperture Correction") l1=LayerXY(apCorr_r,apCorr70) l1.setColor(java.awt.Color.blue) l1.setName("blue") p.addLayer(l1) l2=LayerXY(apCorr_r,apCorr100) l2.setColor(java.awt.Color.green) l2.setName("green") p.addLayer(l2) l3=LayerXY(apCorr_r,apCorr160) l3.setColor(java.awt.Color.red) l3.setName("red") p.addLayer(l3) p.setXrange([0,60]) p.setXtitle('Radius ["]') p.setYrange([0,1]) p.setYtitle('Encircled Energy Fraction') p.batch=0

PACS Photometer PS Calibration & Photometry PSF and Encircled Energy Fraction Markus Nielbock (MPIA) – PACS Photometer Flux Calibration ● derived from scan map observations ● PSF core: (nearly) point sources Vesta and α Tau ● PSF wings: unsaturated areas of Mars WARNING! There is no single general PSF! A PSF is influenced by: ● fast scan PSF smearing ● reduction methods: ● highpass filtering, map pixel size, drizzling ● source SED ● straylight and ghost effects ● pointing quality

PACS Photometer PS Calibration & Photometry Error estimate Markus Nielbock (MPIA) – PACS Photometer Flux Calibration ● pixel-to-pixel noise in final map is affected by correlated noise → measured too low ● error map in L2 product unreliable → highpass filter modifies noise spectrum ● alternative method to derive error map from data is close to final stage ● documentation almost finished: ● noise behaviour as function of HPF, source masking, pixel size, drizzling drop size ● in the meantime: ● photometric error for PS aperture photometry can be estimated from empty background ● Method: multiple aperture photometry of background and use r.m.s. as estimate ● see: L3_pointSourceAperturePhotometry.py

PACS Photometer PS Calibration & Photometry What about PSF photometry? Markus Nielbock (MPIA) – PACS Photometer Flux Calibration ● no task or method provided (yet?) ● How to do this: ● get PSF template observation (e.g. Vesta) ● process to L2 like your science data ● normalise and rotate PSF map ● use a convenient PSF photometry tool

PACS Photometer PS Calibration & Photometry Non-linearity correction: Influence on model PSFs and EEF ● deviations found: ● ~ 10% in peak flux, ~ 5% in total flux ● flux calibration at 70 µm affected ● aperture photometry of point sources is self-consistent ● and not affected (responsivity ↔ aperture correction) ● extended emission currently measured too high at 70 µm ● flux calibration and aperture correction will be updated ● (goal: HIPE 9) ● surface brightness at 70 µm will drop by a few percent Markus Nielbock (MPIA) – Herschel/PACS DP Workshop