3D Simulation Studies of Irradiated BNL One-Sided Dual-column 3D Silicon Detector up to 1x1016 neq/cm2 Zheng Li1 and Tanja Palviainen2 1Brookhaven National.

Slides:



Advertisements
Similar presentations
of Single-Type-Column 3D silicon detectors
Advertisements

Micron detector testing in Liverpool G. Casse – O. Lodge Laboratory, University of Liverpool.
Chapter 9. PN-junction diodes: Applications
3D simulations of device performance for 3D-Trench electrode detector Jianwei Chen a,b, Hao Ding a,b, Zheng Li a,b,c, *, Shaoan Yan a,b a Xiangtan University,
Modeling and simulation of charge collection properties for 3D-Trench electrode detector Hao Ding a, Jianwei Chen a, Zheng Li a,b,c, *, Shaoan Yan a a.
P. Fernández-Martínez – Optimized LGAD Periphery25 th RD50 Workshop, CERN Nov Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Department of Physics VERTEX 2002 – Hawaii, 3-7 Nov Outline: Introduction ISE simulation of non-irradiated and irradiated devices Non-homogeneous.
Test of Pixel Sensors for the CMS experiment Amitava Roy Purdue University.
20th RD50 Workshop (Bari)1 G. PellegriniInstituto de Microelectrónica de Barcelona G. Pellegrini, C. Fleta, M. Lozano, D. Quirion, Ivan Vila, F. Muñoz.
Haga clic para modificar el estilo de texto del patrón Progress on p-type isolation technology M. Lozano, F. Campabadal, C. Fleta, S. Martí *, M. Miñano.
Summary of CMS 3D pixel sensors R&D Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
RAD2012 Ultra-Thin 3D detectors Celeste FletaInstituto de Microelectrónica de Barcelona Celeste Fleta Instituto de Microelectrónica de Barcelona Centro.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institut für Experimentelle Kernphysik
ALBA Synchrotron – 17 June 2010 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona First Measurements on 3D Strips Detectors.
1 G. Pellegrini The 9th LC-Spain meeting 8th "Trento" Workshop on Advanced Silicon Radiation Detectors 3D Double-Sided sensors for the CMS phase-2 vertex.
Summary of CMS 3D pixel sensors R&D Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
Performance limits of a 55  m pixel CdTe detector G.Pellegrini, M. Lozano, R. Martinez, M. Ullan Centro Nacional de Microelectronica, Barcelona, 08193,
Vanderbilt MURI meeting, June 14 th &15 th 2007 Band-To-Band Tunneling (BBT) Induced Leakage Current Enhancement in Irradiated Fully Depleted SOI Devices.
Silicon detector processing and technology: Part II
Analysis of Edge and Surface TCTs for Irradiated 3D Silicon Strip Detectors Graeme Stewart a, R. Bates a, C. Corral b, M. Fantoba b, G. Kramberger c, G.
Low Resistance Strip Sensors – RD50 Common Project – RD50/ CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
Charge Collection and Trapping in Epitaxial Silicon Detectors after Neutron-Irradiation Thomas Pöhlsen, Julian Becker, Eckhart Fretwurst, Robert Klanner,
RD50 funding request Fabrication and testing of new AC coupled 3D stripixel detectors G. Pellegrini - CNM Barcelona Z. Li – BNL C. Garcia – IFIC R. Bates.
1/14 Characterization of P-type Silicon Detectors Irradiated with Neutrons M.Miñano 1, J.P.Balbuena 2, C. García 1, S.González 1, C.Lacasta 1, V.Lacuesta.
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Inversion Study on MCz-n and MCz-p silicon PAD detectors irradiated with 24 GeV/c protons Nicola Pacifico Excerpt from the MSc thesis Tutors: Prof. Mauro.
TCT measurements with SCP slim edge strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko.
Simulations of Hadron Irradiation Effects for Si Sensors Using Effective Bulk Damage Model A. Bhardwaj 1, H. Neugebauer 2, R. Dalal 1, M. Moll 2, Geetika.
Status of CNM RD50 LGAD Project27th RD50 Workshop, CERN 2-4 Dec Centro Nacional del MicroelectrónicaInstituto de Microelectrónica de Barcelona Status.
CNM double-sided 3D strip detectors before and after neutron irradiation Celeste Fleta, Richard Bates, Chris Parkes, David Pennicard, Lars Eklund (University.
Summary of Simulations from KIT Robert Eber, Martin Printz.
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
FBK 3D CMS pixel sensors preliminary lab measurements E. Alagoz 1, A. Krzywda 1, D. Bortoletto 1, I. Shipsey 1, G. Bolla 1, and G. F. Dalla Betta 2, M.
6th Trento Workshop on Advanced Silicon Radiation Detectors1/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) J.P. Balbuena, G.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.
P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de.
How to design a good sensor? General sensor desing rules Avoid high electric fields Provide good interstrip isolation (high Rint) Avoid signal coupling.
Infrared Laser Test System Silicon Diode Testing 29 May 2007 Fadmar Osmić Contents: Setup modifications new amplifier (Agilent MSA-0886) new pulse generator.
Giulio Pellegrini Actividades 3D G. Pellegrini, C. Fleta, D. Quirion, JP Balbuena, D. Bassignana.
G. PellegriniInstituto de Microelectrónica de Barcelona Status of LGAD RD50 projects at CNM28th RD50 Workshop (Torino) 1 Status of LGAD RD50 projects at.
June T-CAD Simulations of 3D Microstrip detectors a) Richard Bates b) J.P. Balbuena,C. Fleta, G. Pellegrini, M. Lozano c) U. Parzefall, M. Kohler,
E-TCT measurements with laser beam directed parallel to strips Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Mikuž 1,2,
Giulio Pellegrini 12th RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity colliders, Ljubljana, Slovenia, 2-4 June 2008 Report.
24/02/2010Richard Bates, 5th Trento workshop, Manchester1 Irradiation studies of CNM double sided 3D detectors a. Richard Bates, C. Parkes, G. Stewart.
Physics of Semiconductor Devices
Development of Silicon Microstrip Sensors in 150 mm p-type Wafers
Radiation damage studies in LGAD detectors from recent CNM and FBK run
Fully Depleted Low Power CMOS Detectors
Physics of Semiconductor Devices Mr. Zeeshan Ali, Asst. Professor
PN-junction diodes: Applications
Radiation Damage TCAD Analysis of Low Gain Avalanche Detectors
Characterization and modelling of signal dynamics in 3D-DDTC detectors
First production of Ultra-Fast Silicon Detectors at FBK
Charge collection studies with irradiated CMOS detectors
Radiation Damage TCAD Analysis of Low Gain Avalanche Detectors
Status of 3D detector fabrications at CNM
Irradiation and annealing study of 3D p-type strip detectors
Graeme Stewarta, R. Batesa, G. Pellegrinib, G. Krambergerc, M
Cint of un-irr./irradiated 200μm devices
HG-Cal Simulation using Silvaco TCAD tool at Delhi University Chakresh Jain, Geetika Jain, Ranjeet Dalal, Ashutosh Bhardwaj, Kirti Ranjan CMS simulation.
TCAD Simulation of Geometry Variation under HPK campaign
Report from CNM activities
Simulation of signal in irradiated silicon detectors
Testbeam Results for GaAs and Radiation-hard Si Sensors
Vladimir Cindro, RD50 Workshop, Prague, June 26-28, 2006
CCE measurements with Epi-Si detectors
Semiconductor Detectors
Fabrication of 3D detectors with columnar electrodes of the same doping type Sabina Ronchina, Maurizio Boscardina, Claudio Piemontea, Alberto Pozzaa, Nicola.
Presentation transcript:

3D Simulation Studies of Irradiated BNL One-Sided Dual-column 3D Silicon Detector up to 1x1016 neq/cm2 Zheng Li1 and Tanja Palviainen2 1Brookhaven National Laboratory 2Lappeenranta University of Technology Work based on the period 2/15/-4/15/07 at Brookhaven National Laboratory *This research was supported by the U.S. Department of Energy: Contract No. DE-AC02-98CH10886

OUTLINE Simulated detector structure Simulation tools Simulated full depletion voltage up to 1x1016 neq/cm2 3D profiles of hole concentration and E-field up to 1x1016 neq/cm2 Various other geometries Summary

Detector Structure BNL’s one-sided, dual column 3D detector There are two n-type (blue) and two p-type (red) doped columns on p-type substrate Same type of doped columns are placed to the opposite corners n+ Front-side: processing side 270 µm p+ Backside: floating with SiO2 =50 µm p+ n+ p+ =10 µm 300 µm p, 10k-cm n+ p+ n+

Simulation Silvaco DEVEDIT3D, DEVICE3D (ATLAS) The detector structure was simulated with different fluencies (Neff) Oxide charge of 4x1011 /cm2 is implemented 3D hole and E-field profiles are simulated

Dual columns 3d detectors Simulated Vfd values in dual column 3D detectors with different fluencies 2d pad detector Dual columns 3d detectors fluency Calculated Vfd (d=50um) Simulated Vfd 5.00E+14 19 30 1.00E+15 38 60 2.00E+15 76 110 3.00E+15 114 160 4.00E+15 152 210 5.00E+15 190 250 6.00E+15 228 300 7.00E+15 266 350 8.00E+15 304 400 9.00E+15 342 450 1.00E+16 380 500 Current vs. V (no lifetime degradation entered) Vfd 3D is 1.4 times higher: Small electrodes

5x1014 neq/cm2 n+ Hole concentration n+ p+ p+ E-field p+ p+ 200V, hole conc., electric field

1x1015 neq/cm2 n+ Hole concentration n+ p+ p+ E-field p+ p+ 200V, hole conc., electric field

2x1015 neq/cm2 n+ Hole concentration n+ p+ p+ E-field p+ p+ 200V, hole conc., electric field

3x1015 neq/cm2 n+ Hole concentration n+ p+ p+ E-field p+ p+ 200V, hole conc., electric field

4x1015 neq/cm2 n+ Hole concentration n+ p+ p+ E-field p+ p+ 200V, hole conc., electric field

5x1015 neq/cm2 n+ Hole concentration n+ p+ p+ E-field p+ p+ 200V, hole conc., electric field

6x1015 neq/cm2 n+ Hole concentration n+ p+ p+ E-field p+ p+ 200V, hole conc., electric field

7x1015 neq/cm2 n+ Hole concentration n+ p+ p+ E-field p+ p+ 200V, hole conc., electric field

8x1015 neq/cm2 n+ Hole concentration n+ p+ p+ E-field p+ p+ 200V, hole conc., electric field

9x1015 neq/cm2 n+ Hole concentration n+ p+ p+ E-field p+ p+ 200V, hole conc., electric field

1x1016 neq/cm2 n+ Hole concentration n+ p+ p+ E-field p+ p+ 200V, hole conc., electric field

9x1015 neq/cm2 (200V) p+ n+ p+ n+ Hole concentration hole conc.

9x1015 neq/cm2 (200V) p+ n+ p+ n+ Hole concentration hole conc.

9x1015 neq/cm2 (200V) p+ n+ p+ n+ Hole concentration hole conc.

9x1015 neq/cm2 (200V) p+ n+ p+ n+ Hole concentration hole conc.

9x1015 neq/cm2 (200V) p+ n+ p+ n+ Hole concentration hole conc.

9x1015 neq/cm2 (200V) p+ n+ p+ n+ Hole concentration hole conc.

9x1015 neq/cm2 (200V) p+ n+ p+ n+ Hole concentration hole conc.

9x1015 neq/cm2 (200V) p+ n+ p+ n+ Hole concentration hole conc.

9x1015 neq/cm2 (200V) p+ n+ p+ n+ Hole concentration hole conc.

9x1015 neq/cm2 (200V) p+ n+ p+ n+ Hole concentration hole conc.

9x1015 neq/cm2 (200V) Hole concentration p+ n+ p+ n+ The volume under the columns can be depleted with modest E-field: not dead area, and providing a sensitivity under the columns

9x1015 neq/cm2 (200V) p+ n+ p+ n+ Hole concentration hole conc.

9x1015 neq/cm2 (200V) p+ n+ p+ n+ Hole concentration hole conc.

9x1015 neq/cm2 (200V) p+ n+ p+ n+ E-field electric field

9x1015 neq/cm2 (200V) p+ n+ p+ n+ E-field electric field

9x1015 neq/cm2 (200V) p+ n+ p+ n+ E-field electric field

9x1015 neq/cm2 (200V) p+ n+ p+ n+ E-field electric field

9x1015 neq/cm2 (200V) p+ n+ p+ n+ E-field electric field

9x1015 neq/cm2 (200V) p+ n+ p+ n+ E-field electric field

9x1015 neq/cm2 (200V) p+ n+ p+ n+ E-field electric field

9x1015 neq/cm2 (200V) p+ n+ p+ n+ E-field electric field

9x1015 neq/cm2 (200V) p+ n+ p+ n+ E-field electric field

9x1015 neq/cm2 (200V) p+ n+ p+ n+ E-field electric field

9x1015 neq/cm2 (200V) p+ n+ p+ n+ E-field electric field

9x1015 neq/cm2 (200V) p+ n+ p+ n+ E-field electric field

9x1015 neq/cm2 (200V) p+ n+ p+ n+ E-field electric field

Varieties in detector geometry The pad size (Lc) and the distance between pads (Lp) were varied Lp Lc Lc

Lc=3um, Lp=10um n+ Hole concentration n+ E-field p+ p+ p+ p+ 200V, hole conc., electric field

Lc=3um, Lp=20um n+ Hole concentration n+ E-field p+ p+ p+ p+ 200V, hole conc., electric field

Lc=5um, Lp=30um n+ Hole concentration n+ E-field p+ p+ p+ p+ 200V, hole conc., electric field

Lc=5um, Lp=40um n+ Hole concentration n+ E-field p+ p+ p+ p+ 200V, hole conc., electric field

Lc=5um, Lp=50um n+ Hole concentration p+ n+ p+ E-field p+ p+ 200V, hole conc., electric field

Simulated Vfd values for different geometries in detector Lp ≤ 30um Simulated Vfd for dual columns 3D detectors Fluency Lc=3um Lp=10um Lc=3um Lp=20um Lc=5um Lp=30um Lc=5um Lp=40um Lc=5um Lp=50um 1.00E+16 10 80 200 460 >500 With lifetime degradation

BNL-2C-3D, p-type bulk (300 µm), p+ and n+ columns (270 µm) LP = 30 µm, 1x1016 neq/cm2, V = 150 V Front side p+ n+ n+ p+ Full 3D detectors with reduced column spacing LP LP ~ dCCE --- less trapping Smaller V --- no breakdown problem Backside

BNL-2C-3D, 1x1016 neq/cm2, 150 V Front side p+ n+ n+ p+ Backside

BNL-2C-3D, 1x1016 neq/cm2, 150 V Front side p+ n+ n+ p+ Backside

Front side p+ n+ n+ p+ Backside

Front side p+ n+ n+ p+ Backside

Front side p+ n+ n+ p+ Backside

Front side p+ n+ n+ p+ Backside

Front side p+ n+ n+ p+ Middle Backside

Front side p+ n+ n+ p+ Backside

Front side p+ n+ n+ p+ End of n+ columns Backside

Front side p+ n+ n+ p+ Backside

Front side p+ n+ n+ p+ Bottom Backside

S.Martí i García1, M.Miñano1, V.Lacuesta1 M.Lozano2, G.Pellegrini2 Characterization of new BNL 3d Si test detectors S.Martí i García1, M.Miñano1, V.Lacuesta1 M.Lozano2, G.Pellegrini2 1Instituto de Física Corpuscular, Aptdo. de correos 22085 E-46071, Paterna (Valencia), Spain 2Centro Nacional de Microelectrónica, Campus Universidad Autónoma de Barcelona, 08193, Bellaterra (Barcelona), Spain

Current measurements BNL 3D stripixel Ta= 23ºC Biasing all Y p+ strips negative Guard ring grounded BNL 3D stripixel

Setup in Valencia Laser Signal 3d Si sensor Trigger Laser light is generated by exciting a laser source with an external pulsed signal (2 V and 1 MHz rate) Laser properties: =1060 nm (Near Infrared) Laser energy of photons=1.170 eV

Charge collection measurements Biasing all Y p+ strips negative The signal corresponds to the X n+ holes Fully depleted at about 4 volts

SUMMARY Simulated Vfd for a dual-column 3D detector is about 1.4 time higher than that of a 2D pad detector with d = Lp Highest E-field is near the n+ column, and high field mainly distributes between the n+ and p+ columns. Low E-field is between the two p+ columns, and the lowest E-field is in the center of the unit cell In order to fully deplete a dual-column 3D detector at 1x1016 neq/cm2 with a reasonable bias (<200 V), the n+-p+ column spacing Lp should be reduced to 40 µm (<50 µm) The volume under the column can be depleted with modest biases: not a dead area, and providing a sensitivity under the columns