Searches for Gravitational Waves Barry Barish Caltech IPA London – Aug 2014 “Merging Neutron Stars“ (Price & Rosswog)

Slides:



Advertisements
Similar presentations
Dennis Ugolini, Trinity University Bite of Science Session, TEP 2014 February 13, 2014 Catching the Gravitational Waves.
Advertisements

Laser Interferometer Gravitational-wave Detectors: Advancing toward a Global Network Stan Whitcomb LIGO/Caltech ICGC, Goa, 18 December 2011 LIGO-G v1.
G v1Advanced LIGO1 Status of Ground-Based Gravitational-wave Interferometers July 11, 2012 Daniel Sigg LIGO Hanford Observatory Astrod 5, Bangalore,
- Gravitational Wave Detection of Astrophysical Sources Barry C. Barish Caltech Neutrino Telescope Venice 24-Feb-05 LIGO-xxx Crab Pulsar.
1 Science Opportunities for Australia Advanced LIGO Barry Barish Director, LIGO Canberra, Australia 16-Sept-03 LIGO-G M.
The LIGO Project ( Laser Interferometer Gravitational-Wave Observatory) Rick Savage – Scientist LIGO Hanford Observatory.
Probing the Universe for Gravitational Waves Barry C. Barish Caltech University of Illinois 16-Feb-06 Crab Pulsar.
LIGO Status and Advanced LIGO Plans Barry C Barish OSTP 1-Dec-04.
Status and Prospects for LIGO Barry C. Barish Caltech 17-March-06 St Thomas, Virgin Islands Crab Pulsar.
Status of the LIGO Project
2/9/2006Welcome to LIGO1 Welcome to LIGO!. 2/9/2006Welcome to LIGO2 LIGO: A detector that measures very tiny displacements How tiny?
The LIGO Project ( Laser Interferometer Gravitational-Wave Observatory) Rick Savage - LIGO Hanford Observatory.
Probing the Universe for Gravitational Waves Barry C. Barish Caltech Cornell University 3-April-06 Crab Pulsar.
Einstein’s Theory of Gravitation “instantaneous action at a distance”
LIGO Present and Future
Detecting Gravitational Waves: How does LIGO work and how well does LIGO work? Barry C. Barish Caltech University of Kentucky 4-March-05 "Colliding.
G M LIGO “First Lock” Barry Barish 21 October 2000.
LIGO-G M LIGO and Detection of Gravitational Waves Barry Barish 13 October 2000.
Laser Interferometer Gravitational-wave Observatory LIGO
LIGO-G9900XX-00-M LIGO: Progress and Prospects Barry Barish 18 July 2000 COSPAR 2000 Fundamental Physics in Space.
1 Observing the Most Violent Events in the Universe Virgo Barry Barish Director, LIGO Virgo Inauguration 23-July-03 Cascina 2003.
Listening to Gravitational Waves: Einstein’s Songlines from the Universe Barry C. Barish.
Searching for gravitational waves with lasers (LIGO)
LIGO-G M LIGO and Prospects for Detection of Gravitational Waves Barry Barish 1 November 2000.
Catching the Waves with LIGO Barry Barish Los Alamos National Laboratory 27-March-03.
Overview Ground-based Interferometers Barry Barish Caltech Amaldi-6 20-June-05.
Gravitational-waves: Sources and detection
The LIGO Project ( Laser Interferometer Gravitational-Wave Observatory) Rick Savage - LIGO Hanford Observatory.
The LIGO Project ( Laser Interferometer Gravitational-Wave Observatory) Rick Savage – Scientist LIGO Hanford Observatory.
1 Probing the Universe for Gravitational Waves Barry C. Barish Caltech UC Davis 12-April-04 "Colliding Black Holes" Credit: National Center for Supercomputing.
1 LIGO and the Quest for Gravitational Waves Barry C. Barish Caltech UT Austin 24-Sept-03 "Colliding Black Holes" Credit: National Center for Supercomputing.
Probing the Universe for Gravitational Waves Barry C. Barish Caltech Georgia Tech 26-April-06 Crab Pulsar.
1 Probing the Universe for Gravitational Waves Barry C. Barish Caltech Argonne National Laboratory 16-Jan-04 "Colliding Black Holes" Credit: National Center.
LIGO -- Studying the Fabric of the Universe LIGO-GOxxxx Barry C. Barish National Science Board LIGO Livingston, LA 4-Feb-04.
Gravitational Wave Detectors: new eyes for physics and astronomy Gabriela González Department of Physics and Astronomy Louisiana State University.
David Shoemaker 30 August 05
LIGO-G v1 The LIGO Vacuum System and plans for LIGO-Australia Stan Whitcomb IndIGO - ACIGA meeting on LIGO-Australia 9 February 2011.
Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.
Advanced LIGO: our future in gravitational astronomy K.A. Strain for the LIGO Science Collaboration NAM 2008 LIGO-G K.
LIGO- G M Status of LIGO David Shoemaker LISA Symposium 13 July 2004.
LIGO-G Opening the Gravitational Wave Window Gabriela González Louisiana State University LSC spokesperson For the LIGO Scientific Collaboration.
14 July LNGSSearch for Gravitational Waves with Interferometers 1 The search for gravitational waves with the new generation of interferometers Peter.
LIGO- G M LIGO David Shoemaker 30 August 05.
LIGO-G D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008.
LIGO- G D Status of LIGO Stan Whitcomb ACIGA Workshop 21 April 2004.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v1.
Gravitational Wave Detection Using Precision Interferometry Gregory Harry Massachusetts Institute of Technology - On Behalf of the LIGO Science Collaboration.
Advanced interferometers for astronomical observations Lee Samuel Finn Center for Gravitational Wave Physics, Penn State.
LIGO-G D Searching for Gravitational Waves with LIGO (Laser Interferometer Gravitational-wave Observatory) Stan Whitcomb LIGO/Caltech National.
LIGO-G D LIGO Laboratory1 Stoyan Nikolov LIGO-G D The LIGO project’s quest for gravitational waves Presenting LIGO to the students of.
LIGO-G M The Curtain Rises on LIGO: Listening to Einstein's Gravitational Symphony Gary Sanders Laser Interferometer Gravitational Wave Observatory.
LIGO-G M Scientific Operation of LIGO Gary H Sanders LIGO Laboratory California Institute of Technology APS Meeting APR03, Philadelphia Gravitational-Wave.
Searching for gravitational waves with lasers
LIGO G M Intro to LIGO Seismic Isolation Pre-bid meeting Gary Sanders LIGO/Caltech Stanford, April 29, 2003.
G Z The LIGO gravitational wave detector consists of two observatories »LIGO Hanford Observatory – 2 interferometers (4 km long arms and 2 km.
LIGO-G M Press Conference Scientific Operation of LIGO Gary H Sanders Caltech (on behalf of a large team) APS April Meeting Philadelphia 6-April-03.
GW – the first GW detection ! Is it a start of GW astronomy ? If “yes” then which ? «Счастлив, кто посетил сей мир в его минуты роковые !...» Ф.Тютчев.
The search for those elusive gravitational waves
Gravitational Wave Detection of Astrophysical Sources Barry C
Current and future ground-based gravitational-wave detectors
GW Policy: The Future: G3 Detectors
The Search for Gravitational Waves with Advanced LIGO
Is there a future for LIGO underground?
LIGO detectors: past, present and future
Exploring the New Frontier of Gravitational-Wave Astronomy
Gravity -- Studying the Fabric of the Universe Barry C
Gravitational wave detection and the quantum limit
Status of LIGO Patrick J. Sutton LIGO-Caltech
The Laser Interferometer Gravitational-wave Observatory
Detection of Gravitational Waves with Interferometers
Presentation transcript:

Searches for Gravitational Waves Barry Barish Caltech IPA London – Aug 2014 “Merging Neutron Stars“ (Price & Rosswog)

2 Einstein’s Theory of Gravitation  a necessary consequence of Special Relativity with its finite speed for information transfer  gravitational waves come from the acceleration of masses and propagate away from their sources as a space-time warpage at the speed of light gravitational radiation binary inspiral of compact objects

3 Einstein’s Theory of Gravitation gravitational waves Using Minkowski metric, the information about space-time curvature is contained in the metric as an added term, h . In the weak field limit, the equation can be described with linear equations. If the choice of gauge is the transverse traceless gauge the formulation becomes a familiar wave equation The strain h  takes the form of a plane wave propagating at the speed of light (c). Since gravity is spin 2, the waves have two components, but rotated by 45 0 instead of 90 0 from each other.

4 Direct Detection of Gravitational Waves Detectors in space LISA Gravitational Wave Astrophysical Source Terrestrial detectors Virgo, LIGO, KAGRA, GEO600 AIGO

5 International Network on Earth LIGO simultaneously detect signal detection confidence GEO Virgo KAGRA locate the sources decompose the polarization of gravitational waves LIGO India

6 Detecting a passing wave …. Free masses

7 Detecting a passing wave …. Interferometer

8 Interferometer Concept  Laser used to measure relative lengths of two orthogonal arms As a wave passes, the arm lengths change in different ways…. …causing the interference pattern to change at the photodiode  Arms in LIGO are 4km  Measure difference in length to one part in or meters Suspended Masses

9 LIGO Simultaneous Detection 3002 km (L/c = 10 ms) Hanford Observatory Caltech Livingston Observatory MIT

10 LIGO Livingston Observatory

11 LIGO Hanford Observatory

12 LIGO Facilities beam tube enclosure minimal enclosure reinforced concrete no services

13 LIGO beam tube  LIGO beam tube under construction in January 1998  65 ft spiral welded sections  girth welded in portable clean room in the field 1.2 m diameter - 3mm stainless 50 km of weld

14 Vacuum Chambers vibration isolation systems »Reduce in-band seismic motion by orders of magnitude »Compensate for microseism at 0.15 Hz by a factor of ten »Compensate (partially) for Earth tides

15 Seismic Isolation springs and masses Constrained Layer damped spring

16 LIGO vacuum equipment

17 Seismic Isolation suspension system support structure is welded tubular stainless steel suspension wire is 0.31 mm diameter steel music wire fundamental violin mode frequency of 340 Hz suspension assembly for a core optic

18 LIGO Optics fused silica Caltech dataCSIRO data  Surface uniformity < 1 nm rms  Scatter < 50 ppm  Absorption < 2 ppm  ROC matched < 3%  Internal mode Q’s > 2 x 10 6

19 Core Optics installation and alignment

Advanced LIGO goal Initial LIGO reach ~20Mpc Advanced LIGO reach ~200Mpc

Astrophysical Sources of Gravitational Waves Casey Reed, Penn State Credit: AEI, CCT, LSU Coalescing Compact Binary Systems: Neutron Star-NS, Black Hole-NS, BH-BH - Strong emitters, well-modeled, - (effectively) transient Credit: Chandra X-ray Observatory Asymmetric Core Collapse Supernovae - Weak emitters, not well-modeled (‘bursts’), transient - NASA/WMAP Science Team Cosmic Gravitational- wave Background - Residue of the Big Bang - Long duration, stochastic background Spinning neutron stars - (nearly) monotonic waveform - Long duration

Some other LVC Results 22 Upper limit on GW stochastic background Nature 460 (2009) 990 Upper limit on GW energy emitted by generic sources at 10 kpc Phys. Rev. D 81 (2010) Upper limits on GW emissions from Crab and Vela pulsars (X-ray: NASA/CXC/Univ of Toronto/M.Durant et al; Optical: DSS/Davide De Martin) NASA/CXC/ASU/J Hester et al. (Chandra); NASA/HST/ASU/J Hester et al. (Hubble) Astrophys. J. 722 (2010) 1504 Astrophys. J. 737 (2011) 93 Quantum-enhanced sensitivity!

Better seismic isolation Higher power laser Better test masses and suspension

Advanced LIGO Major technological improvements Advanced interferometry Signal recycling High power laser (180W) 24 Active vibration isolation systems 40kg Quadruple pendulum

Advanced LIGO 25

Sensitivity as of 23 July 2014  The team is working on stability rather than sensitivity  But present sensitivity is already similar (or better, at low frequencies) to the best sensitivity achieved with initial ‘enhanced’ LIGO  Strain sensitivity is better after 3 months than after 6 years in iLIGO – 26July 2014 PAC

Predicted Rates – Adv LIGO Neutron Star Binaries: Initial LIGO: Average BNS reach ~15 Mpc  rate ~1/50yrs Advanced LIGO: ~ 200 Mpc “Realistic rate” ~ 40/year (but can be ) Other binary systems: NS-BH: 0.004/yr  10/yr BH-BH: 0.007/yr  20/yr Class. Quant. Grav. 27, (2010) 27 Advanced LIGO

Advanced GW Detectors run plan 28

29 Gravitational waves a new window on the universe Coming soon