10/15/2015PHY 711 Fall Lecture 221 PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 Plan for Lecture 22: Summary of some mathematical tools 1.Contour integration 2.Fourier transforms 3.Fast Fourier transforms
10/15/2015PHY 711 Fall Lecture 222
10/15/2015PHY 711 Fall Lecture 223
10/15/2015PHY 711 Fall Lecture 224
10/15/2015PHY 711 Fall Lecture 225
10/15/2015PHY 711 Fall Lecture 226 Example Re(z) Im(z)
10/15/2015PHY 711 Fall Lecture 227 Example -- continued Re(z) Im(z)
10/15/2015PHY 711 Fall Lecture 228 Example -- continued Re(z) Im(z) x’
10/15/2015PHY 711 Fall Lecture 229 Example -- continued Kramers-Kronig relationship
10/15/2015PHY 711 Fall Lecture 2210
10/15/2015PHY 711 Fall Lecture 2211 Example: Re(z) Im(z)
10/15/2015PHY 711 Fall Lecture 2212 Contour integral for homework:
10/15/2015PHY 711 Fall Lecture 2213 Fourier transforms
10/15/2015PHY 711 Fall Lecture 2214 Note: The location of the 2 factor varies among texts.
10/15/2015PHY 711 Fall Lecture 2215
10/15/2015PHY 711 Fall Lecture 2216 Use of Fourier transforms to solve wave equation
10/15/2015PHY 711 Fall Lecture 2217 Use of Fourier transforms to solve wave equation -- continued
10/15/2015PHY 711 Fall Lecture 2218
10/15/2015PHY 711 Fall Lecture 2219
10/15/2015PHY 711 Fall Lecture 2220 Example:
10/15/2015PHY 711 Fall Lecture 2221 Example: f(t) F( )
10/15/2015PHY 711 Fall Lecture 2222 F( ) =-M =M
10/15/2015PHY 711 Fall Lecture 2223
10/15/2015PHY 711 Fall Lecture 2224
10/15/2015PHY 711 Fall Lecture 2225
10/15/2015PHY 711 Fall Lecture 2226 Cooley-Tukey algorithm: J. W. Cooley and J. W. Tukey, “An algorithm for machine calculation of complex Fourier series” Math. Computation 19, (1965)