Chapter 4 Carbon and the Molecular Diversity of Life.

Slides:



Advertisements
Similar presentations
Carbon and the Molecular Diversity of Life
Advertisements

Carbon and molecular diversity of life
Carbon and the Molecular Diversity of Life
LE 4-4 Hydrogen (valence = 1) Oxygen (valence = 2) Nitrogen (valence = 3) Carbon (valence = 4)
1 Chapter 4 Carbon and the Molecular Diversity of Life.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Topic 1:Chemicals of life 1.Molecules and Atoms 2.Water 3.Carbon and Other elements.
1 Carbon and the Molecular Diversity of Life chapter 4 Site: wikipedia.org.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
CARBON. Concept 4.1: Organic chemistry is the study of carbon compounds Organic chemistry is the study of compounds that contain carbon Organic compounds.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
+ Chapter 4: Carbon and the Molecular Diversity of Life.
Chapter 4: Carbon.
Copyright © 2006 Cynthia Garrard publishing under Canyon Design Chapter 4 - Carbon All living organisms – Made of chemicals, based mostly on the element.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
1 Chapter 4 Carbon and the Molecular Diversity of Life.
Chapter 4 Carbon & the Molecular Diversity of Life.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: Carbon—The Backbone of Biological Molecules Although cells are 70–95%
Pre-AP Biology Carbon Properties. Carbon What is the atomic number ? What is the mass number?
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 4 Carbon and the Molecular Diversity of Life.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 4: Carbon—The Backbone of Biological Molecules Although cells are 70–95%
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
© 2014 Pearson Education, Inc. Carbon: The Backbone of Life  Living organisms consist mostly of carbon-based compounds  Carbon is unparalleled in its.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
© 2017 Pearson Education, Inc.
Chapter 4 Carbon and the Molecular Diversity of Life.
Carbon and the Molecular Diversity of Life
Chapter 4: Carbon and the molecular diversity of life
The Chemical Basis for Life II Organic Molecules
Carbon and the Molecular Diversity of Life
Overview: Carbon—The Backbone of Biological Molecules
Carbon and the Molecular Diversity of Life
Chapter 4 Carbon jprthpwoirhtpwoith.
CH 4 Carbon Compounds.
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Concept 4.1: Organic chemistry is the study of carbon compounds
Molecular Diversity of Life
Overview: Carbon: The Backbone of Life
Carbon and the Molecular Diversity of Life
Quick Check: How many valence electrons does carbon have? How many bonds can carbon form? What type of bonds does carbon form with other elements? 4, 4,
and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Overview: Carbon: The Backbone of Life
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Chapter 4 Carbon and the Molecular Diversity of Life
© 2017 Pearson Education, Inc.
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Carbon and the Molecular Diversity of Life
Presentation transcript:

Chapter 4 Carbon and the Molecular Diversity of Life

Overview: Carbon—The Backbone of Biological Molecules Although cells are 70–95% water, the rest consists mostly of carbon-based compounds Carbon is unparalleled in its ability to form large, complex, and diverse molecules Proteins, DNA, carbohydrates, and other molecules that distinguish living matter are all composed of carbon compounds

Organic chemistry is the study of carbon compounds Organic compounds range from simple molecules to colossal ones Most organic compounds contain hydrogen atoms in addition to carbon atoms

Carbon atoms can form diverse molecules by bonding to four other atoms Electron configuration is the key to an atom’s characteristics Electron configuration determines the kinds and number of bonds an atom will form with other atoms – With four valence electrons, carbon can form four covalent bonds with a variety of atoms – This tetravalence makes large, complex molecules possible

Molecular Formula Structural Formula Ball-and-Stick Model Space-Filling Model Methane Ethane Ethene (ethylene)

The electron configuration of carbon gives it covalent compatibility with many different elements The valences of carbon and its most frequent partners (hydrogen, oxygen, and nitrogen) are the “building code” that governs the architecture of living molecules

Hydrogen (valence = 1) Oxygen (valence = 2) Nitrogen (valence = 3) Carbon (valence = 4)

Molecular Diversity Arising from Carbon Skeleton Variation Carbon chains form the skeletons of most organic molecules Carbon chains vary in length and shape

Length Ethane Propane Butane 2-methylpropane (commonly called isobutane) Branching Double bonds Rings 1-Butene2-Butene CyclohexaneBenzene

Hydrocarbons Hydrocarbons are organic molecules consisting of only carbon and hydrogen – Many organic molecules, such as fats, have hydrocarbon components Hydrocarbons can undergo reactions that release a large amount of energy

A fat moleculeMammalian adipose cells 100 µm Fat droplets (stained red)

Isomers Isomers are compounds with the same molecular formula but different structures and properties: – Structural isomers have different covalent arrangements of their atoms – Geometric isomers have the same covalent arrangements but differ in spatial arrangements – Enantiomers are isomers that are mirror images of each other

Structural isomers differ in covalent partners, as shown in this example of two isomers of pentane. Geometric isomers differ in arrangement about a double bond. In these diagrams, X represents an atom or group of atoms attached to a double-bonded carbon. cis isomer: The two Xs are on the same side. trans isomer: The two Xs are on opposite sides. L isomer D isomer Enantiomers differ in spatial arrangement around an asymmetric carbon, resulting in molecules that are mirror images, like left and right hands. The two isomers are designated the L and D isomers from the Latin for left and right (levo and dextro). Enantiomers cannot be superimposed on each other.

Enantiomers are important in the pharmaceutical industry – Two enantiomers of a drug may have different effects – Differing effects of enantiomers demonstrate that organisms are sensitive to even subtle variations in molecules

L -Dopa (effective against Parkinson’s disease) D -Dopa (biologically Inactive)

Functional groups are the parts of molecules involved in chemical reactions Distinctive properties of organic molecules depend not only on the carbon skeleton but also on the molecular components attached to it Certain groups of atoms are often attached to skeletons of organic molecules

The Functional Groups Most Important in the Chemistry of Life Functional groups are the components of organic molecules that are most commonly involved in chemical reactions The number and arrangement of functional groups give each molecule its unique properties

Estradiol Testosterone Male lion Female lion

The six functional groups that are most important in the chemistry of life: – Hydroxyl group – Carbonyl group – Carboxyl group – Amino group – Sulfhydryl group – Phosphate group

STRUCTURE (may be written HO—) NAME OF COMPOUNDS Alcohols (their specific names usually end in -ol) Ethanol, the alcohol present in alcoholic beverages FUNCTIONAL PROPERTIES Is polar as a result of the electronegative oxygen atom drawing electrons toward itself. Attracts water molecules, helping dissolve organic compounds such as sugars (see Figure 5.3).

STRUCTURE NAME OF COMPOUNDS Ketones if the carbonyl group is within a carbon skeleton EXAMPLE Acetone, the simplest ketone A ketone and an aldehyde may be structural isomers with different properties, as is the case for acetone and propanal. Aldehydes if the carbonyl group is at the end of the carbon skeleton Acetone, the simplest ketone Propanal, an aldehyde FUNCTIONAL PROPERTIES

STRUCTURE NAME OF COMPOUNDS Carboxylic acids, or organic acids EXAMPLE Has acidic properties because it is a source of hydrogen ions. Acetic acid, which gives vinegar its sour taste FUNCTIONAL PROPERTIES The covalent bond between oxygen and hydrogen is so polar that hydrogen ions (H + ) tend to dissociate reversibly; for example, Acetic acidAcetate ion In cells, found in the ionic form, which is called a carboxylate group.

STRUCTURE NAME OF COMPOUNDS Amine EXAMPLE Because it also has a carboxyl group, glycine is both an amine and a carboxylic acid; compounds with both groups are called amino acids. FUNCTIONAL PROPERTIES Acts as a base; can pick up a proton from the surrounding solution: (nonionized) Ionized, with a charge of 1+, under cellular conditions Glycine (ionized)

STRUCTURE (may be written HS—) NAME OF COMPOUNDS Thiols EXAMPLE Ethanethiol FUNCTIONAL PROPERTIES Two sulfhydryl groups can interact to help stabilize protein structure (see Figure 5.20).

STRUCTURE NAME OF COMPOUNDS Organic phosphates EXAMPLE Glycerol phosphate FUNCTIONAL PROPERTIES Makes the molecule of which it is a part an anion (negatively charged ion). Can transfer energy between organic molecules.

ATP: An Important Source of Energy for Cellular Processes One phosphate molecule, adenosine triphosphate (ATP), is the primary energy-transferring molecule in the cell ATP consists of an organic molecule called adenosine attached to a string of three phosphate groups