Nuclei in the Cosmos XI Heidelberg, July 22, 2010 Friedrich Röpke DFG Emmy Noether Junior Research Group Max-Planck-Institut für Astrophysik, Garching,

Slides:



Advertisements
Similar presentations
Ringberg, July 8, 2005 COSMIC RATE OF SNIa Laura Greggio INAF, Padova Astronomical Observatory.
Advertisements

Cosmological measurements with Supernovae Ia
The Physics of Supernovae
Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
How to Ignite a White Dwarf !! Jesusita Fire, May 2009 Photo: K. Paxton Lars Bildsten Kavli Institute for Theoretical Physics and Dept of Physics University.
Type Ia Supernovae Progenitors. Type Ia Supernovae Historical defining characteristics: Generally, lack of lines of hydrogen Contain a strong Si II absorption.
Stephen C.-Y. Ng McGill University. Outline Why study supernova? What is a supernova? Why does it explode? The aftermaths --- Supernova remnants Will.
Multidimensional Simulations of Type Ia Supernova Explosions: Confronting Model Predictions with Observations Wolfgang Hillebrandt MPI für Astrophysik.
The Deaths of Stars The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant.
Thermonuclear Supernovae Lifan Wang Texas A&M University Oct 6, 2013.
Recent Progress in Type Ia Supernova Modeling and its Implication for Cosmology Wolfgang Hillebrandt MPI für Astrophysik Garching RESCUE Symp. on Astroparticle.
Supernovae from Massive Stars: light curves and spectral evolution Bruno Leibundgut ESO.
Stars: Nuclear Furnaces. Elemental Composition of Universe.
1 1 Physics of Type Ia Supernova Explosions A. Khokhlov, A.Poludnenko (The University of Chicago) Lifan Wang (A&M) P. Hoeflich (U Florida)
Jens C. What Are Type Ia Supernovae? Jens C. Niemeyer Max-Planck-Institut für Astrophysik Based on collaborations with:
SN Ia: Blown to Smithereens (Röpke and Hillebrandt 2005) Nick Cowan UW Astronomy March 2005 Nick Cowan UW Astronomy March 2005.
Supernova Type 1 Supernova Produced in a binary system containing a white dwarf. The mechanism is the same (?) as what produces the nova event.
Type Ia Supernovae: standard candles? Roger Chevalier.
Modeling Type Ia Supernovae from ignition, to explosion, to emission
Spectroscopy in Stellar Astrophysics Alberto Rebassa Mansergas.
The Discovery of Dark Energy Gerson Goldhaber Physics Department University of California at Berkeley and LBNL.
The origin of the most iron - poor star Stefania Marassi in collaboration with G. Chiaki, R. Schneider, M. Limongi, K. Omukai, T. Nozawa, A. Chieffi, N.
The Explosion Models and Progenitors of Type Ia Supernovae Wang Xiao Feng NAOC
A Step towards Precise Cosmology from Type Ia Supernovae Wang Xiaofeng Tsinghua University IHEP, Beijing, 23/04, 2006.
Stellar Evolution in general and in Special Effects: Core Collapse, C-Deflagration, Dredge-up Episodes Cesare Chiosi Department of Astronomy University.
Presolar grains and AGB stars Maria Lugaro Sterrenkundig Instituut University of Utrecht.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
Optical & Near-Infrared Observations of Peculiar Type Ia SNe with Domestic Collaborations in Japan Masayuki Yamanaka Konan Univ. Seminar at SAI on 2014.
Zorro and the nature of SNe Ia Paolo A. Mazzali Max-Planck Institut für Astrophysik, Garching Astronomy Department and RESearch Centre for the Early Universe,
The theoretical understanding of Type Ia Supernovae Daniel Kasen.
Different Kinds of “Novae” I. Super Novae Type Ia: No hydrogen, CO WD deflagration --> detonation Type Ia: No hydrogen, CO WD deflagration --> detonation.
SN Ia rates and progenitors Mark Sullivan University of Southampton.
Spectroscopic signatures of SN Ia progenitors A talk not about the Palomar Transient Factory Avishay Gal-Yam, Weizmann Institute of Science Leiden workshop.
Clicker Question: In which phase of a star’s life is it converting He to Carbon? A: main sequence B: giant branch C: horizontal branch D: white dwarf.
9. Evolution of Massive Stars: Supernovae. Evolution up to supernovae: the nuclear burning sequence; the iron catastrophe. Supernovae: photodisintigration;
Two types of supernovae
The ASC/Alliances Center for Astrophysical Thermonuclear Flashes The University of Chicago 1 05/31 ASC Alliances Center for Thermonuclear Flashes, University.
Death of sun-like Massive star death Elemental my dear Watson Novas Neutron Stars Black holes $ 200 $ 200$200 $ 200 $ 200 $400 $ 400$400 $ 400$400.
NIRI Observations of Type Ia Supernovae Christopher L. Gerardy University of Texas, Austin Peter GarnavichNotre Dame Peter Hoeflich, UT Austin J. Craig.
Study of the type IIP supernova 2008gz Roy et al. 2011, MNRAS accepted.
Lessons from Spectral Evolution and High-Velocity Features in Core-Normal Type Ia J. Craig Wheeler On Behalf of the Austin Mafia: Howie Marion (+CfA),
Three Challenges to standard assumptions 9/27/13Rosanne Di Stefano, 27 September 2013.
The Deaths of Stars Please press “1” to test your transmitter.
Supernova Type 1 Supernova Produced in a binary system containing a white dwarf. The mechanism is the same (?) as what produces the nova event.
LSU - 25 Oct 071 Supernovae of Type Ia Ronald F. Webbink Department of Astronomy University of Illinois SN 1994D in NGC 4526 (HST)
Global Parameters of Type I Supernovae Maximilian Stritzinger Oskar Klein Centre Stockholm University.
Jim Truran 56Ni, SNeIa Luminosities, and Explosive Nucleosynthesis
Observational Constraints on Progenitors and Explosions of Type Ia Supernovae Keiichi Maeda (Kyoto U.)
Supernova.
Mariko KATO (Keio Univ., Japan) collaboration with
Dani Maoz, Tel-Aviv University
Spectral Synthesis of Core-Collapse Supernovae – The JEKYLL code and its application. Mattias Ergon Collaborators: Claes Fransson (physics and software),
The Formation Efficiency of SNe-Ia: Single-Star Progenitors?
p-process in SNIa: new perspectives R. Gallino C. Travaglio
Outline Introducing thermonuclear supernovae
Ay 123: Supernovae contd...
Exploring the global properties of SNe Ia
Just What is a Supernova?
Stellar Explosions Novae White dwarf in close binary system
Delay time distribution of type Ia supernovae
Delay time distribution of type Ia supernovae
Observations: Cosmic rays
The Deaths of Stars.
Contributions (and Limitations) of Type Ia Supernovae to Cosmology
Just What is a Supernova?
Nucleosynthesis in Early Massive Stars: Origin of Heavy Elements
爆燃Ia型超新星爆発時に おけるダスト形成
Nucleosynthesis in Pop III, Massive and Low-Mass Stars
Supernova.
Predicted Light Curves and Spectra
Presentation transcript:

Nuclei in the Cosmos XI Heidelberg, July 22, 2010 Friedrich Röpke DFG Emmy Noether Junior Research Group Max-Planck-Institut für Astrophysik, Garching, Germany W. Hillebrandt, S. Woosley, S. Sim, I. Seitenzahl, D. Kasen, A. Ruiter, P. Mazzali, M. Kromer, R. Pakmor, M. Fink, F. Ciaraldi-Schoolmann, P. Edelmann Multi-dimensional models of Type Ia supernova explosions

NIC XI 2010Friedrich Röpke, MPA Modeling sequence progenitor system explosion nuclear postprocessing radiation transfer/ synthetic observables

NIC XI 2010Friedrich Röpke, MPA Modeling sequence progenitor system explosion nuclear postprocessing radiation transfer/ synthetic observables see Ivo Seitenzahl's poster #67

NIC XI 2010Friedrich Röpke, MPA Modeling sequence population synthesis/ SN Ia rates progenitor system explosion nuclear postprocessing radiation transfer/ synthetic observables SN Ia observations

NIC XI 2010Friedrich Röpke, MPA Violent WD-WD mergers (Pakmor+, 2010) ► inspiral and merger: 3D SPH code (GADGET3) ► 2 WDs: M 1 = M 2 = 0.9M ⊙

NIC XI 2010Friedrich Röpke, MPA Violent WD-WD mergers ► explosion: 3D MPA SN Ia code (LEAFS) ► detonation after T>2.8 GK ρ = g/cm 3 Ejecta mass: 1.8 M ⊙ 0.1 M ⊙ of 56 Ni 0.1 M ⊙ iron group elements 1.1 M ⊙ intermediate mass elements 0.5 M ⊙ oxygen 0.1 M ⊙ carbon

NIC XI 2010Friedrich Röpke, MPA Violent WD-WD mergers good agreement with observed sub-luminous SNe Ia (“1991bg-like” objects) also supported by population synthesis ► radiation transfer: 3D monte carlo (ARTIS) light curves spectrum

NIC XI 2010Friedrich Röpke, MPA SN Ia sub-classes and rates ► volume-limited (Li+, 2010) Normal70% 91bg18% 91T9% 02cx3%

NIC XI 2010Friedrich Röpke, MPA SN Ia sub-classes and rates ► volume-limited (Li+, 2010) Normal70% 91bg18% 91T9% 02cx3% violent (q~1) WD-WD mergers?

NIC XI 2010Friedrich Röpke, MPA accretion from (normal) binary companion star M Ch model C+O WD M ~ M Ch

NIC XI 2010Friedrich Röpke, MPA Turbulent deflagrations t = sec

NIC XI 2010Friedrich Röpke, MPA Turbulent deflagrations t = sec

NIC XI 2010Friedrich Röpke, MPA Turbulent deflagrations t = sec

NIC XI 2010Friedrich Röpke, MPA Turbulent deflagrations t = sec

NIC XI 2010Friedrich Röpke, MPA Turbulent deflagrations t = sec

NIC XI 2010Friedrich Röpke, MPA Turbulent deflagrations t = sec

NIC XI 2010Friedrich Röpke, MPA Turbulent deflagrations t = sec asymtotic kinetic energy of explosion: ~ 0.58 B ► faint, low energy event ► consistent with peculiar sub-class? M( 56 Ni) ~ 0.32 M ⊙ M(IGE) ~ 0.55 M ⊙ M(IME) ~ 0.16 M ⊙ M(C) ~ 0.31 M ⊙ M(O) ~ 0.39 M ⊙ composition strongly mixed

NIC XI 2010Friedrich Röpke, MPA Turbulent deflagrations SN 2005hk (observation) model spectrum (deflagration simulation) ► radiation transfer: ► preliminary, low resolution ► (Kromer & Sim)

NIC XI 2010Friedrich Röpke, MPA pure (turbulent) deflagrations? SN Ia sub-classes and rates ► volume-limited (Li+, 2010) Normal70% 91bg18% 91T9% 02cx3% violent (q~1) WD-WD mergers?

NIC XI 2010Friedrich Röpke, MPA Delayed detonation model ► detonation of M Ch WD after pre-expansion in initial deflagration phase (Khokhlov 1991) ► requires deflagration-to-detonation transition (DDT) of flame ► probably possible at low densitites (late phase of explosion) if turbulence still strong enough (FR, 2007; Woosley 2007; Woosley+, 2009) FR & Niemeyer, 2007 Mazzali et al., 2007

NIC XI 2010Friedrich Röpke, MPA Synthetic observables ► radiation transfer for 44 2D explosion models (Kasen+, 2009) compared with SN 2003du

NIC XI 2010Friedrich Röpke, MPA delayed detonations? not supported by population synthesis pure (turbulent) deflagrations? SN Ia sub-classes and rates ► volume-limited (Li+, 2010) Normal70% 91bg18% 91T9% 02cx3% violent (q~1) WD-WD mergers?

NIC XI 2010Friedrich Röpke, MPA Sub-M Ch explosions Model 2 ► explosion simulation (Fink+, 2007, 2010) ► minimum He-shell masses (Bildsten+, 2007) ► He shell C+ O core

NIC XI 2010Friedrich Röpke, MPA Sub-M Ch explosions Model 2 ► explosion simulation: (Fink+, 2007, 2010) ► minimum He-shell masses (Bildsten+, 2007) ► C+O core detonation triggers robustly ►

NIC XI 2010Friedrich Röpke, MPA Sub-M Ch explosions ► radiation transfer (Kromer+, 2010) ► iron group elements produced in He shell detonation (Ti, Cr, etc) may be problematic flux re-distribution due to Cr, Ti absorption

NIC XI 2010Friedrich Röpke, MPA Sub-M Ch explosions ► changing C abundance in He shell may help (Kromer+, 2010) ► bare sub-M ch detonations produce promising results (Sim+, 2010) 33% carbon-enriched He shell

NIC XI 2010Friedrich Röpke, MPA delayed detonations? or sub-M Ch detonations? (consistent with population synthesis) pure (turbulent) deflagrations? SN Ia sub-classes and rates ► volume-limited (Li+, 2010) Normal70% 91bg18% 91T9% 02cx3% violent (q~1) WD-WD mergers?