1 Static Checking and Type Systems Chapter 6 COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2007.

Slides:



Advertisements
Similar presentations
CH4.1 Type Checking Md. Fahim Computer Engineering Department Jamia Millia Islamia (A Central University) New Delhi –
Advertisements

CS3012: Formal Languages and Compilers Static Analysis the last of the analysis phases of compilation type checking - is an operator applied to an incompatible.
CPSC 388 – Compiler Design and Construction
Semantic Analysis and Symbol Tables
Chapter 6 Type Checking. The compiler should report an error if an operator is applied to an incompatible operand. Type checking can be performed without.
Semantic Analysis Chapter 6. Two Flavors  Static (done during compile time) –C –Ada  Dynamic (done during run time) –LISP –Smalltalk  Optimization.
1 Mooly Sagiv and Greta Yorsh School of Computer Science Tel-Aviv University Modern Compiler Design.
1 Compiler Construction Intermediate Code Generation.
Lecture # 21 Chapter 6 Uptill 6.4. Type System A type system is a collection of rules for assigning type expressions to the various parts of the program.
Overview of Previous Lesson(s) Over View  Front end analyzes a source program and creates an intermediate representation from which the back end generates.
Elaboration or: Semantic Analysis Compiler Baojian Hua
Lecture # 20 Type Systems. 2 A type system defines a set of types and rules to assign types to programming language constructs Informal type system rules,
Type Checking Compiler Design Lecture (02/25/98) Computer Science Rensselaer Polytechnic.
Chapter 6 Type Checking Section 0 Overview 1.Static Checking Check that the source program follows both the syntactic and semantic conventions of the source.
CH4.1 CSE244 Type Checking Aggelos Kiayias Computer Science & Engineering Department The University of Connecticut 371 Fairfield Road, Unit 1155 Storrs,
Compiler Construction
Lesson 12 CDT301 – Compiler Theory, Spring 2011 Teacher: Linus Källberg.
Chapter 6 Type Checking Section 0 Overview
Type Checking  Legality checks  Operator determination  Overload resolution.
1 Type Type system for a programming language = –set of types AND – rules that specify how a typed program is allowed to behave Why? –to generate better.
Types Type = Why? a set of values
Cs164 Prof. Bodik, Fall Symbol Tables and Static Checks Lecture 14.
Static checking and symbol table Chapter 6, Chapter 7.6 and Chapter 8.2 Static checking: check whether the program follows both the syntactic and semantic.
CSc 453 Semantic Analysis Saumya Debray The University of Arizona Tucson.
1 Static Checking and Type Systems Chapter 6 COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University,
Lesson 11 CDT301 – Compiler Theory, Spring 2011 Teacher: Linus Källberg.
410/510 1 of 18 Week 5 – Lecture 1 Semantic Analysis Compiler Construction.
CS536 Semantic Analysis Introduction with Emphasis on Name Analysis 1.
1 Static Checking and Type Systems Chapter 6 COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2005.
Static Checking and Type Systems Chapter 6. 2 Static versus Dynamic Checking Static checking: the compiler enforces programming language’s static semantics.
1 Syntax-Directed Translation Part I Chapter 5 COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2007.
1 A Simple Syntax-Directed Translator CS308 Compiler Theory.
1 Compiler Construction (CS-636) Muhammad Bilal Bashir UIIT, Rawalpindi.
More on Type Checking. Conversion and Coercion Int C; A = C;
Semantic Analysis II Type Checking EECS 483 – Lecture 12 University of Michigan Wednesday, October 18, 2006.
Data Types (3) 1 Programming Languages – Principles and Practice by Kenneth C Louden.
1 February 17, February 17, 2016February 17, 2016February 17, 2016 Azusa, CA Sheldon X. Liang Ph. D. Computer Science at Azusa Pacific University.
Lecture 8 Semantic Analysis.
Chapter 8: Semantic Analyzer1 Compiler Designs and Constructions Chapter 8: Semantic Analyzer Objectives: Syntax-Directed Translation Type Checking Dr.
CSc 453 Semantic Analysis Saumya Debray The University of Arizona Tucson.
Compiler Principle and Technology Prof. Dongming LU Apr. 15th, 2015.
Semantic Analysis Chapter 6. Two Flavors  Static (done during compile time) –C –Ada  Dynamic (done during run time) –LISP –Smalltalk  Optimization.
Chapter4 Syntax-Directed Translation Introduction : 1.In the lexical analysis step, each token has its attribute , e.g., the attribute of an id is a pointer.
CS 404Ahmed Ezzat 1 CS 404 Introduction to Compiler Design Lecture 9 Ahmed Ezzat Semantic Analysis.
Compilers Principles, Techniques, & Tools Taught by Jing Zhang
Lecture 9 Symbol Table and Attributed Grammars
Compiler Design – CSE 504 Type Checking
Semantics Analysis.
Type Checking and Type Inference
Semantic Analysis Type Checking
Context-Sensitive Analysis
Constructing Precedence Table
Compilers Principles, Techniques, & Tools Taught by Jing Zhang
Syntax-Directed Translation Part I
Semantic Analysis Chapter 6.
Syntax-Directed Translation Part I
Syntax-Directed Translation Part I
Static Checking and Type Systems
Chapter 6 Intermediate-Code Generation
Lecture 15 (Notes by P. N. Hilfinger and R. Bodik)
Overview of Compilation The Compiler BACK End
Compilers B V Sai Aravind (11CS10008).
COP4020 Programming Languages
Semantic Analysis Chapter 6.
Syntax-Directed Translation Part I
SYNTAX DIRECTED DEFINITION
Compiler Construction
Compilers Principles, Techniques, & Tools Taught by Jing Zhang
Syntax-Directed Translation Part I
Compiler Construction
Presentation transcript:

1 Static Checking and Type Systems Chapter 6 COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2007

2 The Structure of our Compiler Revisited Lexical analyzer Syntax-directed static checker Character stream Token stream Java bytecode Yacc specification JVM specificationLex specification Syntax-directed translator Type checking Code generation

3 Static versus Dynamic Checking Static checking: the compiler enforces programming language’s static semantics –Program properties that can be checked at compile time Dynamic semantics: checked at run time –Compiler generates verification code to enforce programming language’s dynamic semantics

4 Static Checking Typical examples of static checking are –Type checks –Flow-of-control checks –Uniqueness checks –Name-related checks

5 Type Checks, Overloading, Coercion, and Polymorphism int op(int), op(float); int f(float); int a, c[10], d; d = c+d;// FAIL *d = a;// FAIL a = op(d);// OK: overloading (C++) a = f(d);// OK: coersion of d to float vector v;// OK: template instantiation

6 Flow-of-Control Checks myfunc() { … break; // ERROR } myfunc() { … switch (a) { case 0: … break; // OK case 1: … } myfunc() { … while (n) { … if (i>10) break; // OK }

7 Uniqueness Checks myfunc() { int i, j, i; // ERROR … } cnufym(int a, int a) // ERROR { … } struct myrec { int name; }; struct myrec // ERROR { int id; };

8 Name-Related Checks LoopA: for (int I = 0; I < n; I++) { … if (a[I] == 0) break LoopB; // Java labeled loop … }

9 One-Pass versus Multi-Pass Static Checking One-pass compiler: static checking for C, Pascal, Fortran, and many other languages is performed in one pass while intermediate code is generated –Influences design of a language: placement constraints Multi-pass compiler: static checking for Ada, Java, and C# is performed in a separate phase, sometimes by traversing the syntax tree multiple times

10 Type Expressions Type expressions are used in declarations and type casts to define or refer to a type –Primitive types, such as int and bool –Type constructors, such as pointer-to, array-of, records and classes, templates, and functions –Type names, such as typedefs in C and named types in Pascal, refer to type expressions

11 Graph Representations for Type Expressions int *f(char*,char*) fun argspointer char intpointer char pointer Tree forms fun argspointer char intpointer DAGs

12 Cyclic Graph Representations struct Node { int val; struct Node *next; }; struct val pointer int Cyclic graph next

13 Name Equivalence Each type name is a distinct type, even when the type expressions the names refer to are the same Types are identical only if names match Used by Pascal (inconsistently) type link = ^node; var next : link; last : link; p : ^node; q, r : ^node; With name equivalence in Pascal: p ≠ next p ≠ last p = q = r next = last

14 Structural Equivalence of Type Expressions Two types are the same if they are structurally identical Used in C, Java, C# struct valnext int pointer struct val int pointer = next

15 Structural Equivalence of Type Expressions (cont’d) Two structurally equivalent type expressions have the same pointer address when constructing graphs by sharing nodes struct val int pointers p struct Node { int val; struct Node *next; }; struct Node s, *p; … p = &s; // OK … *p = s; // OK next &s *p

16 Constructing Type Graphs in Yacc Type *mkint() construct int node if not already constructed Type *mkarr(Type*,int) construct array-of-type node if not already constructed Type *mkptr(Type*) construct pointer-of-type node if not already constructed

17 Syntax-Directed Definitions for Constructing Type Graphs in Yacc %union { Symbol *sym; int num; Type *typ; } %token INT %token ID %token NUM %type type % decl : type ID { addtype($2, $1); } | type ID ‘[’ NUM ‘]’ { addtype($2, mkarr($1, $4)); } ; type : INT { $$ = mkint(); } | type ‘*’ { $$ = mkptr($1); } | /* empty */ { $$ = mkint(); } ;

18 Type Systems A type system defines a set of types and rules to assign types to programming language constructs Informal type system rules, for example “if both operands of addition are of type integer, then the result is of type integer” Formal type system rules: Post system

19 Type Rules in Post System Notation   e 1 : integer   e 2 : integer   e 1 + e 2 : integer Type judgments e :  where e is an expression and  is a type, are provable or not Environment  maps objects v to types  :  (v) =   (v) =    v :    e :    v := e : void  (v) = 

20 Type System Example   y + 2 : integer   x := y + 2 : void Environment  binds objects to types, for example  = {  x,integer ,  y,integer ,  z,char ,  1,integer ,  2,integer  } Type checking = theorem proving The proof that x := y + 2 is typed correctly:  (y) = integer   y : integer  (x) = integer  (2) = integer   2 : integer

21 A Simple Language Example P  D ; S D  D ; D  id : T T  boolean  char  integer  array [ num ] of T  ^ T S  id := E  if E then S  while E do S  S ; S E  true  false  literal  num  id  E and E  E + E  E [ E ]  E ^

22 Simple Language Example: Declarations D  id : T{ addtype(id.entry, T.type) } T  boolean{ T.type := boolean } T  char{ T.type := char } T  integer{ T.type := integer } T  array [ num ] of T 1 { T.type := array(1..num.val, T 1.type) } T  ^ T 1 { T.type := pointer(T 1 ) Parametric types: type constructor

23 Simple Language Example: Checking Statements S  id := E { S.type := if id.type = E.type then void else type_error }   e :    v := e : void  (v) =  Note: the type of id is determined by scope’s environment: id.type = lookup(id.entry)

24 Simple Language Example: Checking Statements (cont’d) S  if E then S 1 { S.type := if E.type = boolean then S 1.type else type_error }  s :    if e then s :   e : boolean 

25 Simple Language Example: Statements (cont’d) S  while E do S 1 { S.type := if E.type = boolean then S 1.type else type_error }  s :    while e do s :   e : boolean 

26 Simple Language Example: Checking Statements (cont’d) S  S 1 ; S 2 { S.type := if S 1.type = void and S 2.type = void then void else type_error }  s 2 : void   s 1 ; s 2 : void  s 1 : void 

27 Simple Language Example: Checking Expressions E  true{ E.type = boolean } E  false { E.type = boolean } E  literal { E.type = char } E  num{ E.type = integer } E  id{ E.type = lookup(id.entry) } …  (v) =    v : 

28 Simple Language Example: Checking Expressions (cont’d) E  E 1 + E 2 { E.type := if E 1.type = integer and E 2.type = integer then integer else type_error }   e 1 : integer   e 2 : integer   e 1 + e 2 : integer

29 Simple Language Example: Checking Expressions (cont’d) E  E 1 and E 2 { E.type := if E 1.type = boolean and E 2.type = boolean then boolean else type_error }   e 1 : boolean   e 2 : boolean   e 1 and e 2 : boolean

30 Simple Language Example: Checking Expressions (cont’d) E  E 1 [ E 2 ] { E.type := if E 1.type = array(s, t) and E 2.type = integer then t else type_error }   e 1 : array(s,  )   e 2 : integer   e 1 [e 2 ] : 

31 Simple Language Example: Checking Expressions (cont’d) E  E 1 ^{ E.type := if E 1.type = pointer(t) then t else type_error }   e : pointer(  )   e ^ : 

32 A Simple Language Example: Functions T  T -> T E  E ( E )E  E ( E ) For example: v : integer; odd : integer -> boolean; if odd(3) then v := 1;

33 Simple Language Example: Function Declarations T  T 1 -> T 2 { T.type := function(T 1.type, T 2.type) } Parametric type: type constructor

34 Simple Language Example: Checking Function Invocations E  E 1 ( E 2 ) { E.type := if E 1.type = function(s, t) and E 2.type = s then t else type_error }   e 1 : function( ,  )   e 2 :    e 1 (e 2 ) : 

35 Type Conversion and Coercion Type conversion is explicit, for example using type casts Type coercion is implicitly performed by the compiler Both require a type system to check and infer types for (sub)expressions

36 Syntax-Directed Definitions for Type Checking in Yacc %{ enum Types {Tint, Tfloat, Tpointer, Tarray, … }; typedef struct Type { enum Types type; struct Type *child; // at most one type parameter } Type; %} %union { Type *typ; } %type expr % …

37 Syntax-Directed Definitions for Type Checking in Yacc (cont’d) … % expr : expr ‘+’ expr { if ($1->type != Tint || $3->type != Tint) semerror(“non-int operands in +”); $$ = mkint(); emit(iadd); }

38 Syntax-Directed Definitions for Type Coercion in Yacc … % expr : expr ‘+’ expr { if ($1->type == Tint && $3->type == Tint) { $$ = mkint(); emit(iadd); } else if ($1->type == Tfloat && $3->type == Tfloat) { $$ = mkfloat(); emit(fadd); } else if ($1->type == Tfloat && $3->type == Tint) { $$ = mkfloat(); emit(i2f); emit(fadd); } else if ($1->type == Tint && $3->type == Tfloat) { $$ = mkfloat(); emit(swap); emit(i2f); emit(fadd); } else semerror(“type error in +”); $$ = mkint(); }

39 Syntax-Directed Definitions for L-Values and R-Values in Yacc %{ typedef struct Node { Type *typ; // type structure int islval; // 1 if L-value } Node; %} %union { Node *rec; } %type expr % …

40 Syntax-Directed Definitions for L-Values and R-Values in Yacc expr : expr ‘+’ expr { if ($1->typ->type != Tint || $3->typ->type != Tint) semerror(“non-int operands in +”); $$->typ = mkint(); $$->islval = FALSE; emit(…); } | expr ‘=’ expr { if (!$1->islval || $1->typ != $3->typ) semerror(“invalid assignment”); $$->typ = $1->typ; $$->islval = FALSE; emit(…); } | ID { $$->typ = lookup($1); $$->islval = TRUE; emit(…); }