Tigran Kalaydzhyan Spring School on Superstring Theory and Related Topics 28 March - 05 April The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. P.Buividovich, M.Chernodub, D.Kharzeev, T.K., E.Luschevskaya, M.I.Polikarpov, PRL V. Braguta, P. Buividovich, T. K., S. Kuznetsov, M.I. Polikarpov, PoS LATTICE P. Buividovich, T. K., M.I. Polikarpov (in preparation) Local CP-violation in quark-gluon plasma: a lattice study. DESY THEORY WORKSHOP September 27 – 30, 2011 Cosmology meets Particle Physics: Ideas & Measurements DESY Hamburg, Germany
Topological charge density
Chiral Magnetic Effect Abelev et al. ( ), Kharzeev, McLerran, Warringa (2007) Excess of positive charge Excess of negative charge
Lüscher and Weisz (1985), see also Lepage hep-lat/ Step 1: Lattice action
● Heat bath for SU(2) ● Using the standard algorithm for each subgroup. Cabibbo & Marinari (1982) Overrelaxation. Adler (1981) Cooling (smearing) for some particular cases. DeGrand, Hasenfratz, Kovács (1997) Step 2: Monte Carlo
Buividovich, Chernodub, Luschevskaya, Polikarpov (2009) Neuberger overlap operator (1998) Фермионы Фермионы Step 3: Fermions & B-field
Chirality fluctuations (T<T c ) Current fluctuations (T<T c ) Fluctuations of chirality Fluctuations of chirality
Current fluctuations (T<T c ) Current fluctuations Current fluctuations
Current-current correlator CONFINEMENT DECONFINEMENT (T=350 MeV)
... and its spectral function Conductivity Meson masses
Electrical conductivity P.V. Buividovich, M.N. Chernodub, D.E. Kharzeev, T.K., E.V. Luschevskaya, M.I. Polikarpov (2010)
What does it mean? There are similar effects for T > T c and thus the local CP-violation is present in the both confinement and deconfinement phases Above T c vacuum is a conductor Below T c vacuum is either an insulator (for B = 0) or an anisotropic conductor (for strong B) This supports the idea of the CME as a macroscopic current. TcTc conductor insulator,anisotropicconductor
Where is it localized? Negative topological charge density Positive topological charge density
P.V. Buividovich, M.N. Chernodub, D.E. Kharzeev, T.K., E.V. Luschevskaya, M.I. Polikarpov (2010) Inverse Participation Ratio Inverse Participation Ratio (inverse volume of the distribution): Observables: Fractal dimension (performing the number of measurements with finite lattice spacing): „Chiral condensate“ for eigenvalue λ „Chirality“ = Topological charge density Unlocalized: ρ(x) = const,IPR = 1 Localized on a site: IPR = N Localized on fraction f of sites:IPR = 1/ f
P.V. Buividovich, M.N. Chernodub, D.E. Kharzeev, T.K., E.V. Luschevskaya, M.I. Polikarpov (2010) Localization of zero-modes Definition :
P.V. Buividovich, M.N. Chernodub, D.E. Kharzeev, T.K., E.V. Luschevskaya, M.I. Polikarpov (2010) Topological charge density Definition 1: Definition 2:
P.V. Buividovich, M.N. Chernodub, D.E. Kharzeev, T.K., E.V. Luschevskaya, M.I. Polikarpov (2010) Fractal dimension Our result: d = 2 ÷ 3 d = 0: instantons d = 1: percolating monopoles d = 2: percolating vortices d = 3: low-dim. domains About low-dimensional defects in QCD see also V.I. Zakharov, Phys.Atom.Nucl. 68 (2005) 573 [hep-ph/ ]
Thank you for the attention! and Have a good time!