Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Transmission Loss of Variable Cross Section Apertures J. Vib. Acoust. 2014;136(4):044501-044501-5.

Slides:



Advertisements
Similar presentations
Date of download: 6/8/2016 Copyright © ASME. All rights reserved. From: Modeling, Prototyping, and Testing of Helical Shape Memory Compression Springs.
Advertisements

Date of download: 6/18/2016 Copyright © ASME. All rights reserved. From: Analytical Treatment With Rigid-Elastic Vibration of Permanent Magnet Motors With.
Date of download: 6/20/2016 Copyright © ASME. All rights reserved.
Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: A Physics-Based Friction Model and Integration to a Simple Dynamical System J.
Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: On the Apparent Propagation Speed in Transmission Line Matrix Uniform Grid Meshes.
Date of download: 6/26/2016 Copyright © ASME. All rights reserved. From: A Unified Force Controller for a Proportional-Injector Direct-Injection Monopropellant-Powered.
Date of download: 6/28/2016 Copyright © ASME. All rights reserved. From: Convective Heat Transfer and Contact Resistances Effects on Performance of Conventional.
Date of download: 7/1/2016 Copyright © ASME. All rights reserved. From: Modeling and Analysis of Piezoelectric Energy Harvesting From Aeroelastic Vibrations.
Date of download: 7/6/2016 Copyright © ASME. All rights reserved. From: The Scattering of Acoustic Wave by a Chain of Elastic Spheres in Liquid J. Vib.
Date of download: 7/8/2016 Copyright © ASME. All rights reserved. From: An Approximate Formula to Calculate the Restoring and Damping Forces of an Air.
Date of download: 7/8/2016 Copyright © ASME. All rights reserved. From: Delamination Detection-Oriented Finite Element Model for a Fiber Reinforced Polymer.
Date of download: 7/8/2016 Copyright © ASME. All rights reserved. From: Modeling and Testing of After-Treatment Devices J. Vib. Acoust. 2005;128(3):
Date of download: 9/17/2016 Copyright © ASME. All rights reserved. From: Frequency Tuning of a Nonlinear Electromagnetic Energy Harvester J. Vib. Acoust.
From: Wave Propagation in Sandwich Structures With Multiresonators
Date of download: 9/19/2016 Copyright © ASME. All rights reserved. From: Determining the Power Flow in a Rectangular Plate Using a Generalized Two-Step.
Date of download: 10/1/2017 Copyright © ASME. All rights reserved.
Date of download: 10/5/2017 Copyright © ASME. All rights reserved.
Date of download: 10/8/2017 Copyright © ASME. All rights reserved.
Date of download: 10/10/2017 Copyright © ASME. All rights reserved.
From: Structural and Acoustic Behavior of Chiral Truss-Core Beams
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
Date of download: 10/15/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
From: Gas-Filled Encapsulated Thermal-Acoustic Transducer
From: Gas-Filled Encapsulated Thermal-Acoustic Transducer
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/28/2017 Copyright © ASME. All rights reserved.
From: Surgical Access System for Frugal Bariatric Surgery
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
From: Galerkin Solution of Stochastic Reaction-Diffusion Problems
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
Date of download: 11/4/2017 Copyright © ASME. All rights reserved.
Date of download: 11/4/2017 Copyright © ASME. All rights reserved.
Date of download: 11/5/2017 Copyright © ASME. All rights reserved.
Date of download: 11/5/2017 Copyright © ASME. All rights reserved.
Date of download: 11/6/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/14/2017 Copyright © ASME. All rights reserved.
Date of download: 11/15/2017 Copyright © ASME. All rights reserved.
Date of download: 11/15/2017 Copyright © ASME. All rights reserved.
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/23/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/25/2017 Copyright © ASME. All rights reserved.
Date of download: 12/28/2017 Copyright © ASME. All rights reserved.
Date of download: 12/30/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
A Rigid Mechanism With Uniform, Variable Curvature1
Design of a Wireless Biological Signal Conditioning System1
Date of download: 3/2/2018 Copyright © ASME. All rights reserved.
From: Magnetic Field Effects on Laser Drilling
Figure 1 Schematic Representation of a Hole
Presentation transcript:

Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Transmission Loss of Variable Cross Section Apertures J. Vib. Acoust. 2014;136(4): doi: / Schematic identifying variables for an aperture with the entry on the left and exit on the right Figure Legend:

Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Transmission Loss of Variable Cross Section Apertures J. Vib. Acoust. 2014;136(4): doi: / Acoustic finite element model of a uniform cross-sectional area aperture with diffuse acoustic field excitation at the entry and radiation impedance at the aperture entry and exit Figure Legend:

Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Transmission Loss of Variable Cross Section Apertures J. Vib. Acoust. 2014;136(4): doi: / Transmission loss of a circular aperture with radius of 5.64 mm and length of 10 cm. For the acoustic FEM, the element length is 0.7 mm with 257,474 nodes (quadratic tetrahedral elements). Fifty four acoustic modes were included in the forced response analysis. Figure Legend:

Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Transmission Loss of Variable Cross Section Apertures J. Vib. Acoust. 2014;136(4): doi: / Transmission loss for uniform cross section apertures having the same cross-sectional area but different shape Figure Legend:

Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Transmission Loss of Variable Cross Section Apertures J. Vib. Acoust. 2014;136(4): doi: / Schematic showing a conical aperture and variables. r2 and L are held constant at 5.64 mm and 100 mm, respectively. Figure Legend:

Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Transmission Loss of Variable Cross Section Apertures J. Vib. Acoust. 2014;136(4): doi: / Transmission loss for converging and diverging cones. For the converging case, r1 and r2 are mm and 5.64 mm, respectively. For the diverging case, r1 and r2 are 5.64 mm and mm, respectively. For the acoustic FEM, the element length is 1 mm with 527,924 nodes (quadratic tetrahedral elements). Two hundred and sixty eight acoustic modes were included in the forced response analysis. Figure Legend:

Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Transmission Loss of Variable Cross Section Apertures J. Vib. Acoust. 2014;136(4): doi: / Effect of radius ratio on the transmission loss of a conical aperture; r = 5.64 mm Figure Legend:

Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Transmission Loss of Variable Cross Section Apertures J. Vib. Acoust. 2014;136(4): doi: / Schematic showing an aperture with abrupt contraction. l1 and l2 are each 50 mm and r is 5.64 mm. Figure Legend:

Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Transmission Loss of Variable Cross Section Apertures J. Vib. Acoust. 2014;136(4): doi: / Effect of radius ratio (R/r) on the transmission loss for an aperture with abrupt cross-sectional area change Figure Legend:

Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Transmission Loss of Variable Cross Section Apertures J. Vib. Acoust. 2014;136(4): doi: / Transmission loss determined by acoustic finite element analysis and compared with measured results [23] for aperture with 6 cm × 13 cm cross section and length of 30 cm. The cutoff frequency is approximately 1310 Hz. For the acoustic FEM, the element length is 5 mm with 186,819 nodes (quadratic tetrahedral elements). Four hundred and eighty two acoustic modes were included in the forced response analysis. Figure Legend: