Statistical analysis of PET data using FMRISTAT (!)

Slides:



Advertisements
Similar presentations
A general statistical analysis for fMRI data Keith Worsley 12, Chuanhong Liao 1, John Aston 123, Jean-Baptiste Poline 4, Gary Duncan 5, Vali Petre 2, Frank.
Advertisements

1 Statistics – Understanding your findings Chris Rorden 1.Modeling data: Signal, Error and Covariates Statistical contrasts 2.Thresholding Results: Statistical.
Topological Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course London, May 2014 Many thanks to Justin.
Covariance, autocorrelation & non-sphericity Methods for Dummies.
Multiple testing Justin Chumbley Laboratory for Social and Neural Systems Research Institute for Empirical Research in Economics University of Zurich With.
07/01/15 MfD 2014 Xin You Tai & Misun Kim
Multiple testing Justin Chumbley Laboratory for Social and Neural Systems Research Institute for Empirical Research in Economics University of Zurich With.
Connectivity between MS lesion density and cortical thickness Keith Worsley Arnaud Charil Jason Lerch Department of Mathematics and Statistics, McConnell.
Multiple comparison correction Methods & models for fMRI data analysis 29 October 2008 Klaas Enno Stephan Branco Weiss Laboratory (BWL) Institute for Empirical.
False Discovery Rate Methods for Functional Neuroimaging Thomas Nichols Department of Biostatistics University of Michigan.
1 Overview of Hierarchical Modeling Thomas Nichols, Ph.D. Assistant Professor Department of Biostatistics Mixed Effects.
The statistical analysis of fMRI data Keith Worsley 12, Chuanhong Liao 1, John Aston 123, Jean-Baptiste Poline 4, Gary Duncan 5, Vali Petre 2, Frank Morales.
Connectivity of aMRI and fMRI data Keith Worsley Arnaud Charil Jason Lerch Francesco Tomaiuolo Department of Mathematics and Statistics, McConnell Brain.
2nd Level Analysis Jennifer Marchant & Tessa Dekker
TSTAT_THRESHOLD (~1 secs execution) Calculates P=0.05 (corrected) threshold t for the T statistic using the minimum given by a Bonferroni correction and.
Detecting connectivity between images: MS lesions, cortical thickness, and the 'bubbles' task in an fMRI experiment Keith Worsley, Math + Stats, Arnaud.
Multiple Comparison Correction in SPMs Will Penny SPM short course, Zurich, Feb 2008 Will Penny SPM short course, Zurich, Feb 2008.
Random Field Theory Will Penny SPM short course, London, May 2005 Will Penny SPM short course, London, May 2005 David Carmichael MfD 2006 David Carmichael.
Basics of fMRI Inference Douglas N. Greve. Overview Inference False Positives and False Negatives Problem of Multiple Comparisons Bonferroni Correction.
With a focus on task-based analysis and SPM12
Analysis of fMRI data with linear models Typical fMRI processing steps Image reconstruction Slice time correction Motion correction Temporal filtering.
Keith Worsley Department of Mathematics and Statistics, and McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University Correlation.
Neural systems supporting the preparatory control of emotional responses Tor D. Wager, Brent L. Hughes, Matthew L. Davidson, Melissa Brandon, and Kevin.
Multiple comparisons in M/EEG analysis Gareth Barnes Wellcome Trust Centre for Neuroimaging University College London SPM M/EEG Course London, May 2013.
Methods for Dummies Random Field Theory Annika Lübbert & Marian Schneider.
FMRI ROI Analysis 7/18/2014 Friday Yingying Wang
Wellcome Dept. of Imaging Neuroscience University College London
Detecting multivariate effective connectivity Keith Worsley, Department of Mathematics and Statistics, McGill University, Montreal Jason Lerch, Montreal.
Classical Inference on SPMs Justin Chumbley SPM Course Oct 23, 2008.
Correlation random fields, brain connectivity, and astrophysics Keith Worsley Arnaud Charil Jason Lerch Francesco Tomaiuolo Department of Mathematics and.
Random Field Theory Will Penny SPM short course, London, May 2005 Will Penny SPM short course, London, May 2005.
Functional Brain Signal Processing: EEG & fMRI Lesson 14
Spatial Smoothing and Multiple Comparisons Correction for Dummies Alexa Morcom, Matthew Brett Acknowledgements.
New results in the geometry of random fields, with applications to CMB and galaxy density Keith Worsley, Hugo Drouin, Pauline Klein Department of Mathematics.
Spatial smoothing of autocorrelations to control the degrees of freedom in fMRI analysis Keith Worsley Department of Mathematics and Statistics, McGill.
Our entry in the Functional Imaging Analysis contest Jonathan Taylor Stanford Keith Worsley McGill.
Detecting connectivity: MS lesions, cortical thickness, and the “bubbles” task in the fMRI scanner Keith Worsley, McGill (and Chicago) Nicholas Chamandy,
FMRI and MR Spectroscopy. BOLD BOLD=Blood Oxygenation Level Dependant contrast Neurons at work use oxygen (carried by hemoglobin) 1-5 s. delay, peaks.
Multiple comparisons problem and solutions James M. Kilner
Topological Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course London, May 2015 With thanks to Justin.
Group Analysis ‘Ōiwi Parker Jones SPM Course, London May 2015.
Hierarchical statistical analysis of fMRI data across runs/sessions/subjects/studies using BRAINSTAT / FMRISTAT Jonathan Taylor, Stanford Keith Worsley,
Statistical analysis of fMRI data, ‘bubbles’ data, and the connectivity between the two Keith Worsley, McGill (and Chicago) Nicholas Chamandy, McGill and.
Mixed effects models for a hierarchical analysis of fMRI data, and Bayesian model selection applied to activation detection Keith Worsley 12, Chuanhong.
What a Cluster F… ailure!
functional magnetic resonance imaging (fMRI)
Keith Worsley, McGill Jonathan Taylor,
Topological Inference
Estimation & Hypothesis Testing for Two Population Parameters
Nonparametric Inference with SnPM
A general statistical analysis for fMRI data
Model-driven statistical analysis of fMRI data
The statistical analysis of fMRI data
Thomas Nichols, Ph.D. Assistant Professor Department of Biostatistics
Detecting Sparse Connectivity: MS Lesions, Cortical Thickness, and the ‘Bubbles’ Task in an fMRI Experiment Keith Worsley, Nicholas Chamandy, McGill Jonathan.
Detecting Sparse Connectivity: MS Lesions, Cortical Thickness, and the ‘Bubbles’ Task in an fMRI Experiment Keith Worsley, Nicholas Chamandy, McGill Jonathan.
Maxima of discretely sampled random fields
Methods for Dummies Random Field Theory
Multiple comparisons in M/EEG analysis
Topological Inference
The statistical analysis of surface data
BrainStat - the details
The statistical analysis of fMRI data using FMRISTAT and MINC
Hierarchical Models and
Jonathan Taylor, Stanford Keith Worsley, McGill
Keith Worsley, McGill Jonathan Taylor,
Multiple testing Justin Chumbley Laboratory for Social and Neural Systems Research Institute for Empirical Research in Economics University of Zurich.
Multiple testing Justin Chumbley Laboratory for Social and Neural Systems Research Institute for Empirical Research in Economics University of Zurich.
WellcomeTrust Centre for Neuroimaging University College London
Keith Worsley, Math + Stats,
Presentation transcript:

Statistical analysis of PET data using FMRISTAT (!) Keith Worsley Department of Mathematics and Statistics, McConnell Brain Imaging Centre, McGill University

CBF non kinetic Unnormalized data (z = -6 mm) base 0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3 3.5 4 x 10 c:/keith/fMRI/manou/cbf non kin/bach allan -h1 tal 200008161003.mnc, slice 21 5 10 9 8 7 6 15 14 13 12 11 20 19 18 17 16 24 23 22 21 29 28 27 26 25 34 33 32 31 30 39 38 37 36 35 44 43 42 41 40 49 48 47 46 45 54 53 52 51 50 59 58 57 56 55 64 63 62 61 60 69 68 67 66 65 Subjects 4 3 2 1 Task Unnormalized data (z = -6 mm) base

CBF non-kinetic Normalized: thresh at ½ max, average, divide base 0.5 0.5 1 1.5 c:/keith/fMRI/manou/cbf non kin/normalized, slice 21 5 4 3 2 10 9 8 7 6 15 14 13 12 11 20 19 18 17 16 24 23 22 21 29 28 27 26 25 34 33 32 31 30 39 38 37 36 35 44 43 42 41 40 49 48 47 46 45 54 53 52 51 50 59 58 57 56 55 64 63 62 61 60 69 68 67 66 65 Subjects 4 3 2 1 Task Normalized: thresh at ½ max, average, divide base

Correlation models bias variance Independent scans Autocorrelation All correlations DF: (#subj-1) × (#scans-1) = 51 Depends on correlations, contrast (#subj-1) = 13 Standard error of contrasts: bias variance Safest: DOT, FMRISTAT boost df by pooling/smoothing SPM?

Is pooling sd valid. Is sd constant across the brain Is pooling sd valid? Is sd constant across the brain? Unsmoothed sd assuming independent scans, 51 df: Pooled Sd = 0.027

FMRISTAT: smoothing instead of pooling Effective df depends on FWHMsd: dfeff = dfresidual(2 + 1) FWHMsd2 3/2 FWHMdata2 5 10 50 100 5 10 Infinity 50 100 e.g. FWHMdata = 8.3 mm: Infinity pooled sd, dfeff = infinity Target = 100 df dfeff independent no smoothing, dfeff = 51 dfeff = 13 all correlations FWHM = 10.0 mm FWHMsd FWHM = 4.4 mm

FMRISTAT: smooth sd by FWHM = 4.4 mm, df = 100

SD: Voxel Smooth Pooled CBF non kinetic (z = 57 mm) T statistic SD: Voxel Smooth Pooled DF: 51 100 infinite Effect is always same

Stat_summary task 4 – base CLUSTERS: clus vol resel Pval (one) 1 4688 10.92 0 ( 0) 2 7067 10.58 0 ( 0) 3 947 1.6 0.033 (0.001) 4 543 0.88 0.22 ( 0.01) 5 415 0.75 0.323 (0.015) 6 169 0.39 0.788 ( 0.06) Effective FWHM: 15 PEAKS: clus peak Pval (one) Qval (i j k) ( x y z ) 2 8.03 0 ( 0) 0 ( 35 62 64) (-38.9 -19.4 58.5) 1 6.8 0 ( 0) 0 ( 81 40 13) ( 22.8 -57.3 -18) 1 6.58 0 ( 0) 0 ( 76 43 11) ( 16.1 -52.1 -21) 2 6.34 0 ( 0) 0 ( 39 59 67) (-33.5 -24.6 63) 2 6.33 0 ( 0) 0 ( 42 64 70) (-29.5 -16 67.5) 1 5.41 0.019 (0.001) 0 ( 70 42 12) ( 8 -53.8 -19.5) 1 5.4 0.02 (0.001) 0 ( 68 41 13) ( 5.4 -55.6 -18) 1 5.38 0.021 (0.001) 0 ( 69 42 13) ( 6.7 -53.8 -18) 2 5.25 0.037 (0.002) 0 ( 30 57 63) (-45.6 -28 57) 3 5.08 0.076 (0.004) 0.001 ( 17 76 42) ( -63 4.6 25.5) 2 5 0.104 (0.005) 0.001 ( 31 59 64) (-44.2 -24.6 58.5) 9 4.9 0.155 (0.007) 0.001 ( 14 67 12) ( -67 -10.8 -19.5) 3 4.85 0.191 (0.008) 0.001 ( 16 75 42) (-64.3 2.9 25.5) 5 4.81 0.223 ( 0.01) 0.001 ( 65 77 61) ( 1.3 6.4 54) 10 5

CBF kinetic Unnormalized, z= -6 mm base 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 c:/keith/fMRI/manou/cbf kin/bach allan -h1 sumpetkinetic tal 200008161003.mnc, slice 21 5 4 3 2 1 9 8 7 6 15 14 13 12 11 18 17 16 23 22 21 19 28 27 26 25 24 33 32 31 29 38 37 36 35 34 43 42 41 39 48 47 46 45 44 53 52 51 49 58 57 56 55 54 63 62 61 59 68 67 66 65 64 Subjects 4 3 2 1 Task Unnormalized, z= -6 mm base

Is pooling sd valid. Is sd constant across the brain Is pooling sd valid? Is sd constant across the brain? Unsmoothed sd assuming independent scans, 51 df: Pooled Sd = 7.2

SD: Voxel Smooth Pooled CBF kinetic (z = 57 mm) T statistic SD: Voxel Smooth Pooled DF: 51 100 infinite Effect is always same

T stat, smoothed sd, 100 df CBF non kinetic vs. kinetic

Stat_summary task 4 – base (search region is where CBF non kinetic T > 5) CLUSTERS: clus vol resel Pval (one) 1 1338 3.11 0 (0.002) 2 363 1 0.008 (0.043) Effective FWHM: PEAKS: clus peak Pval (one) Qval (i j k) ( x y z ) 1 6.24 0 ( 0) 0 (33 63 61) (-41.5 -17.7 54) 1 5.32 0 ( 0) 0 (32 62 63) (-42.9 -19.4 57) 1 5.14 0 (0.001) 0 (35 63 60) (-38.9 -17.7 52.5) 2 4.82 0.001 (0.003) 0 (79 43 11) ( 20.1 -52.1 -21) 2 4.48 0.003 (0.009) 0 (78 44 12) ( 18.8 -50.4 -19.5) 2 4.32 0.005 (0.015) 0 (81 42 11) ( 22.8 -53.8 -21) 1 4.3 0.005 (0.015) 0 (41 62 70) (-30.8 -19.4 67.5) 1 4.19 0.007 (0.021) 0 (40 61 69) (-32.2 -21.2 66) 1 4.16 0.007 (0.023) 0 (32 60 66) (-42.9 -22.9 61.5) 6 3.91 0.016 (0.049) 0.001 (31 59 64) (-44.2 -24.6 58.5) 2 3.64 0.034 (0.099) 0.001 (81 41 10) ( 22.8 -55.6 -22.5) 2 3.52 0.047 (0.135) 0.002 (82 41 11) ( 24.1 -55.6 -21) 1 3.5 0.05 (0.143) 0.002 (39 58 69) (-33.5 -26.3 66) 3 3.42 0.062 (0.175) 0.002 (30 58 64) (-45.6 -26.3 58.5) 1 3.33 0.077 (0.214) 0.002 (38 65 68) (-34.8 -14.3 64.5) 2 3.16 0.116 (0.313) 0.003 (82 38 10) ( 24.1 -60.7 -22.5) 15 10 5

CMRO kinetic Unnormalized, z = -6 mm base 50 100 150 200 250 300 50 100 150 200 250 300 c:/keith/fMRI/manou/cmro kin/bach allan -o1 sumpetkinetic tal 200008161158.mnc, slice 21 5 4 3 2 1 10 9 8 7 6 15 14 13 12 11 20 19 18 17 16 25 24 23 22 21 30 29 28 27 26 35 34 33 32 31 40 39 38 37 36 44 43 42 41 49 48 47 46 45 54 53 52 51 59 58 57 56 55 64 63 62 61 60 69 68 67 66 65 Subjects 4 3 2 1 Task Unnormalized, z = -6 mm base

CMRO kinetic Unnormalized, smoothed 16mm FWHM

Is pooling sd valid. Is sd constant across the brain Is pooling sd valid? Is sd constant across the brain? Unsmoothed sd assuming independent scans, 48 df: Pooled Sd = 12.7

SD: Voxel Smooth Pooled SD: Voxel Smooth Pooled CMRO kinetic T statistic, z = 57 mm SD: Voxel Smooth Pooled DF: 48 100 infinite T statistic, z = -6 mm SD: Voxel Smooth Pooled DF: 48 100 infinite

CMRO kinetic smoothed 16 mm, “safe” analysis of task 3 - base 10 20 30 Sd 2 1 8 16 24 32 40 48 56 64 72 CMRO kinetic smoothed 16 mm, “safe” analysis of task 3 - base -2 2 4 6 T statistics 3 1 8 16 24 32 40 48 56 64 72 Unsmoothed sd, 12 df Sd smoothed 26 mm, 100 df Unsmoothed sd, 12 df T = 6.79 Sd smoothed 26 mm, 100 df T = 4.14 Pooled sd, infinite df T = 3.93

Stat_summary task 3 – base CLUSTERS: clus vol resel Pval (one) 1 927 0.25 0.179 (0.121) 2 211 0.06 0.485 (0.409) 3 138 0.05 0.545 (0.485) 4 266 0.04 0.554 (0.498) 40 Effective FWHM: 30 PEAKS: clus peak Pval (one) Qval (i j k) ( x y z ) 1 4.42 0.065 (0.034) 0.651 (37 107 40) (-36.2 58 22.5) 1 4.41 0.068 (0.036) 0.651 (35 106 39) (-38.9 56.2 21) 1 4.41 0.068 (0.036) 0.651 (36 106 40) (-37.5 56.2 22.5) 1 4.37 0.077 (0.041) 0.651 (37 106 42) (-36.2 56.2 25.5) 1 4.32 0.089 (0.047) 0.651 (36 107 38) (-37.5 58 19.5) . 4 3.44 1.072 ( 0.54) 1.003 (83 75 21) ( 25.5 2.9 -6) 4 3.44 1.091 (0.549) 1.003 (82 75 22) ( 24.1 2.9 -4.5) 20 10