Model independent analysis method for the differential cross-section of elastic pp scattering T. Csörgő 1,2, T. Novák 1 and A. Ster 2 1 EKU KRC, Gyöngyös,

Slides:



Advertisements
Similar presentations
Stokes Phenomena and Non-perturbative Completion in the multi-cut matrix models Hirotaka Irie (NTU) A collaboration with Chuan-Tsung Chan (THU) and Chi-Hsien.
Advertisements

Anomalous Pion Production in High Energy Particle Collisions Alexander Bylinkin, Andrey Rostovtsev XV Moscow School of Physics XXXX ITEP Winter School.
6-1 Introduction To Empirical Models 6-1 Introduction To Empirical Models.
Prediction, Goodness-of-Fit, and Modeling Issues ECON 6002 Econometrics Memorial University of Newfoundland Adapted from Vera Tabakova’s notes.
Zimányi 2009 Winter School on Heavy Ion Physics
STAR Patricia Fachini 1 Brookhaven National Laboratory Motivation Data Analysis Results Conclusions Resonance Production in Au+Au and p+p Collisions at.
A. ISMD 2003, Cracow Indication for RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to.
Ch 5.1: Review of Power Series
STAR Looking Through the “Veil of Hadronization”: Pion Entropy & PSD at RHIC John G. Cramer Department of Physics University of Washington, Seattle, WA,
Bose-Einstein correlations T. Csörgő, S. Hegyi, T. Novák and W. A. Zajc (KFKI RMKI Budapest & Nijmegen & Columbia, New York) & the anomalous dimension.
 -decay theory. The decay rate Fermi’s Golden Rule density of final states (b) transition (decay) rate (c) transition matrix element (a) Turn off any.
CISE-301: Numerical Methods Topic 1: Introduction to Numerical Methods and Taylor Series Lectures 1-4: KFUPM.
Percentile Approximation Via Orthogonal Polynomials Hyung-Tae Ha Supervisor : Prof. Serge B. Provost.
CISE-301: Numerical Methods Topic 1: Introduction to Numerical Methods and Taylor Series Lectures 1-4: KFUPM CISE301_Topic1.
Practical Statistical Analysis Objectives: Conceptually understand the following for both linear and nonlinear models: 1.Best fit to model parameters 2.Experimental.
Two Particle Correlations and Viscosity in Heavy Ion Collisions Monika Sharma for the Wayne State University STAR Collaboration Outline: Motivation Measurement.
ZIMANYI-SCHOOL11, Budapest, 01/12/2011 A. Ster, RMKI, Hungary 1 Correlations in double parton distributions at small x MTA KFKI RMKI, Budapest, Hungary.
Zimányi School, Budapest, Hungary, 2014/12/01 Csörgő, T. 1 Excitation function of elastic pp scattering from a unitary extension of Bialas-Bzdak model.
21th Epiphany Conference, Cracow, Poland, 2015/01/09 Csörgő, T. 1 Total, inelastic and elastic cross-sections of high energy pp, pA and eA collisions in.
Introduction 2. 2.Limitations involved in West and Yennie approach 3. 3.West and Yennie approach and experimental data 4. 4.Approaches based on.
1 1.Introduction 2.Limitations involved in West and Yennie approach 3.West and Yennie approach and experimental data 4.Approaches based on impact parameter.
Geographic Information Science
Miyajima, 41 th ISMD, 2011/9/28Csörgő T. Intoductory review Intoductory review Bose-Einstein correlations in small systems Csörgő, Tamás MTA KFKI RMKI,
Anatomy Scientific Method. Scientific Method A standardized means of organizing and evaluating information to reach valid conclusions. **it’s a process!
November 29, 2010Zimanyi Winter School 2010, Budapest11 3D Pion & Kaon Source Imaging from 200 AGeV Au+Au collisions Paul Chung (STAR Collaboration) NPI.
Astronomical Data Analysis I
Energy Scan of Hadron (  0 ) Suppression and Flow in Au+Au Collisions at PHENIX Norbert Novitzky for PHENIX collaboration University of Jyväskylä, Finland.
T. NN2006, Rio de Janeiro, 2006/8/31 1 T. Csörgő MTA KFKI RMKI, Budapest, Hungary Correlation Signatures of a Second Order QCD Phase Transition.
T. Csörgő 1, R. J. Glauber 2, F. Nemes 1, J. Velasco 3 1 Wigner RCP, Budapest, Hungary 2 Harvard University, Cambridge, MA, USA 3 IFIC, University of Valencia,
Advanced Engineering Mathematics, 7 th Edition Peter V. O’Neil © 2012 Cengage Learning Engineering. All Rights Reserved. CHAPTER 4 Series Solutions.
Statistical Data Analysis 2010/2011 M. de Gunst Lecture 9.
Andrei Rostovtsev Moscow, ITEP Low-x, June 2013 (Eilat) On behalf of H1 Collaboration.
Regression Analysis1. 2 INTRODUCTION TO EMPIRICAL MODELS LEAST SQUARES ESTIMATION OF THE PARAMETERS PROPERTIES OF THE LEAST SQUARES ESTIMATORS AND ESTIMATION.
CHAPTER 2.3 PROBABILITY DISTRIBUTIONS. 2.3 GAUSSIAN OR NORMAL ERROR DISTRIBUTION  The Gaussian distribution is an approximation to the binomial distribution.
T. Csörgő 1, R. J. Glauber 2, F. Nemes 1, J. Velasco 3 1 Wigner RCP, Budapest, Hungary 2 Harvard University, Cambridge, MA, USA 3 IFIC, University of Valencia,
Itzhak Tserruya Initial Conditions at RHIC: an Experimental Perspective RHIC-INT Workshop LBNL, May31 – June 2, 2001 Itzhak Tserruya Weizmann.
Zimányi Winter School, ELTE, 6/12/ Csörgő T. Review of the first results from the RHIC Beam Energy Scan Csörgő, Tamás Wigner Research Centre for.
Miyajima, 41 th ISMD, 2011/9/27Csörgő T. Intoductory review Intoductory review Bose-Einstein correlations in small systems Csörgő, Tamás MTA KFKI RMKI,
Understanding the rapidity dependence of v 2 and HBT at RHIC M. Csanád (Eötvös University, Budapest) WPCF 2005 August 15-17, Kromeriz.
Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic.
D-term chaotic inflation in supergravity Masahide Yamaguchi (Aoyama Gakuin University) arXiv: Collaboration with Kenji Kadota 21st Aug
Paul Chung for the STAR Collaboration Nuclear Physics Institute ASCR Prague WPCF 2011, Tokyo 3D kaon source extraction from 200GeV Au+Au collisions.
Shape analysis of HBT correlations T. Csörgő, S. Hegyi and W. A. Zajc (KFKI RMKI Budapest & Columbia, New York) Bose-Einstein Correlations for Lévy Stable.
Analysis of the anomalous tail of pion production in Au+Au collisions as measured by the PHENIX experiment at RHIC M. Nagy 1, M. Csanád 1, T. Csörgő 2.
Model independent analysis of nearly Levy correlations in 1, 2 and 3 dimensions T. Csörgő KRF, Wigner RCP H.C. Eggers and M.B. De Kock University of Stellenbosh.
Lévy sorfejtések T. Csörgő KRF, Wigner RCP H.C. Eggers and M.B. De Kock University of Stellenbosh Model-independent shape analysis: ● General introduction.
A generalized Buda-Lund model M. Csanád, T. Csörgő and B. Lörstad (Budapest & Lund) Buda-Lund model for ellipsoidally symmetric systems and it’s comparison.
BEYOND GAUSSIAN APPROXIMATION (EXPERIMENTAL) W. KITTEL Radboud University Nijmegen.
1 Autocorrelation in Time Series data KNN Ch. 12 (pp )
A. Ster A. Ster 1, T. Csörgő 1,2, M. Csanád 3, B. Lörstad 4, B. Tomasik 5 Oscillating HBT radii and the time evolution of the source 200 GeV Au+Au data.
Kreuth, 2015/10/5-9 Csörgő, T. Evidence for non-exponential pp d/dt at low t and √s = 8 TeV by TOTEM T. Csörgő for the TOTEM Collaboration.
WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 1 Observables and initial conditions for rotating and expanding fireballs T. Csörgő 1,2, I.Barna 1.
An analytically solvable model of a nuclear cascade in the atmosphere M. G. Kostyuk BNO INR RAS Using sufficiently accurate uniform (that is, suitable.
T. Csörgő1, R. J. Glauber2, F. Nemes1 , J. Velasco3
DIFFERENTIAL EQUATIONS
HBT overview T. Csörgő 1,2 Overview on fundamentals:
Experimental Design.
Recent Results from TOTEM
Nodal Methods for Core Neutron Diffusion Calculations
HBT overview with emphasis on shape analysis
Numerical Analysis Lecture 27.
UNIT II Analysis of Continuous Time signal
Class Notes 9: Power Series (1/3)
J.-F. Pâris University of Houston
The Pion Emission Function in Z-Decay from Bose-Einstein Correlations
Chapter 4, Regression Diagnostics Detection of Model Violation
Berlin Chen Department of Computer Science & Information Engineering
CISE-301: Numerical Methods Topic 1: Introduction to Numerical Methods and Taylor Series Lectures 1-4: KFUPM CISE301_Topic1.
Introductory Statistics
Approximation of Functions
Presentation transcript:

Model independent analysis method for the differential cross-section of elastic pp scattering T. Csörgő 1,2, T. Novák 1 and A. Ster 2 1 EKU KRC, Gyöngyös, Hungary 2 Wigner RCP, Budapest, Hungary OUTLINE Model-independent shape analysis: ● General introduction ● Edgeworth, Laguerre ● Levy expansions ● Application in elastic pp scattering Summary

MODEL - INDEPENDENT SHAPE ANALYIS I. Model-independent method, proposed to analyze Bose-Einstein correlations IF experimental data satisfy ●The measured data tend to a constant for large values of the observable Q. ●There is a non-trivial structure at some definite value of Q, shift it to Q = 0. Model-independent, but experimentally testable: ●t = Q R ●dimensionless scaling variable ●approximate form of the correlations w(t) ●Identify w(t) with a measure in an abstract Hilbert-space T. Csörgő and S: Hegyi, hep-ph/ , T. Csörgő, hep-ph/001233

MODEL - INDEPENDENT SHAPE ANALYIS II. Then the function g can be expanded as From the completeness of the Hilbert space, if g(t) is also in the Hilbert space: T. Csörgő and S: Hegyi, hep-ph/ , T. Csörgő, hep-ph/001233

MODEL - INDEPENDENT SHAPE ANALYIS III. Model-independent AND experimentally testable: ●method for any approximate shape w(t) ●the core-halo intercept parameter of the CF is ●coefficients by numerical integration (fits to data) ●condition for applicability: experimentally testabe

GAUSSIAN w(t): EDGEWORTH EXPANSION 3d generalization straightforward ●Applied by NA22, L3, STAR, PHENIX, ALICE, CMS (LHCb)

EXPONENTIAL w(t): LAGUERRE EXPANSIONS Model-independent but experimentally tested: ●w(t) exponential ● t: dimensionless ● Laguerre polynomials First successful tests ●NA22, UA1 data ● convergence criteria satisfied ● intercept parameter ~ 1

Model-independent but: ●Levy: stretched exponential ●generalizes exponentials and Gaussians ● ubiquoutous in nature ● How far from a Levy? ● Need new set of polynomials orthonormal to a Levy weight STRETCHED w(t): LEVY EXPANSIONS

T. Csörgő and S: Hegyi, hep-ph/ , T. Csörgő, hep-ph/ These reduce to the Laguerre expansions and Laguerre polynomials. STRETCHED w(t): LEVY EXPANSIONS

T. Csörgő and S: Hegyi, hep-ph/ , T. Csörgő, hep-ph/ Provides a new expansion around a Gaussian shape that is defined for the non-negative values of t only. arXiv: [physics.data-an] Edgeworth expansion different, its around two-sided Gaussian, includes non-negative values of t also. STRETCHED w(t)=exp(-t  ): LEVY EXPANSIONS

EXAMPLE, LAGUERRE EXPANSIONS T. Csörgő and S: Hegyi, hep-ph/ , T. Csörgő, hep-ph/001233

Model-independent but: ●Levy generalizes exponentials and Gaussians ● ubiquoutous in nature ● How far from a Levy? ● Not necessarily positive definit ! M. de Kock, H. C. Eggers, T. Cs: arXiv: v1 [nucl-th] EXAMPLE, LEVY EXPANSIONS

T. Cs, S. Hegyi, W.A. Zajc, EPJ C36, 67 (2004) Model-independent but: ●Assumes that Coulomb can be corrected ● No assumptions about analyticity yet ● For simplicity, consider 1d case first ● For simplicity, consider factorizable x k ● Normalizations : density multiplicity single-particle spectra LEVY EXPANSIONS for POSITIVE DEFINIT FORMS

MINIMAL MODEL ASSUMPTION: LEVY T. Cs, S. Hegyi, W.A. Zajc, EPJ C36, 67 (2004)

UNIVARIATE LEVY EXAMPLES T. Cs, hep-ph/ , T. Cs, S. Hegyi, W.A. Zajc, EPJ C36, 67 (2004)

Non-Exponential Differential Cross-Section T. Csörgő and S: Hegyi, hep-ph/ , T. Csörgő, hep-ph/001233

However, this method does not extrapolate well T. Csörgő and S: Hegyi, hep-ph/ , T. Csörgő, hep-ph/001233

LEVY EXPANSION FIT TO NON-EXPONENTIALS

T. Csörgő and S: Hegyi, hep-ph/ , T. Csörgő, hep-ph/ Levy expansion method works in a large t interval

T. Csörgő and S: Hegyi, hep-ph/ , T. Csörgő, hep-ph/ Fit range: Up to –t=10 GeV 2 Up to –t=3 GeV 2 FIT RESULTS – LEVY EXPONENTS

T. Csörgő and S: Hegyi, hep-ph/ , T. Csörgő, hep-ph/ t<10GeV 2 -t<3GeV 2 FIT RESULTS – EXPANSION PARAMETERS

SUMMARY AND CONCLUSIONS