The excitation and decay of nuclear isomers

Slides:



Advertisements
Similar presentations
Some Aspects of Nuclear Structure Paddy Regan Department of Physics University of Surrey Guildford, UK IASEN School 1 Dec 2013 iThemba.
Advertisements

Some (more) Nuclear Structure
Search for key nuclear structure states below 132 Sn M. Górska, M. Pfützner, H. Grawe et al.
Structure of the ECEC candidate daughter 112 Cd P.E. Garrett University of Guelph TRIUMF Excellence Cluster “Universe”, Technische Universität München.
March 1, 2013GRETINA workshop Coulomb excitation of even Ru and Mo isotopes Juho Rissanen Nuclear Structure Group, Lawrence Berkeley.
Isomer Spectroscopy in Near-Spherical Nuclei Lecture at the ‘School cum Workshop on Yrast and Near-Yrast Spectroscopy’ IIT Roorkee, October 2009 Paddy.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
From Magic 208 Pb to the 170 Dy Mid-Shell Paddy Regan WNSL, Yale University, New Haven, CT and Dept. of Physics, University of Surrey, UK
Isomers and shape transitions in the n-rich A~190 region: Phil Walker University of Surrey prolate K isomers vs. oblate collective rotation the influence.
The Collective Model Aard Keimpema.
Semi-magic seniority isomers and the effective interactions
Angular momentum population in fragmentation reactions Zsolt Podolyák University of Surrey.
W. Udo Schröder, 2005 Rotational Spectroscopy 1. W. Udo Schröder, 2005 Rotational Spectroscopy 2 Rigid-Body Rotations Axially symmetric nucleus 
The Long and the Short of it: Measuring picosecond half-lives… Paddy Regan Dept. of Physics, University of Surrey, Guildford, GU2 7XH, UK
NUCLEAR STRUCTURE PHENOMENOLOGICAL MODELS
The stability of triaxial superdeformed shape in odd-odd Lu isotopes Tu Ya.
Collective Model. Nuclei Z N Character j Q obs. Q sp. Qobs/Qsp 17 O 8 9 doubly magic+1n 5/ K doubly magic -1p 3/
Исследование запаздывающего деления и сосуществования форм в ядрах таллия, астата и золота (ИРИС, ПИЯФ — ISOLDE, CERN) A. E. Барзах, Ю. M. Волков, В. С.
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
The excitation and decay of nuclear isomers Phil Walker CERN and University of Surrey, UK 3. Isomers at the limits of stability ● p decay ● n decay ● α.
Isomer Studies as Probes of Nuclear Structure in Heavy, Neutron-Rich Nuclei Dr. Paddy Regan Dept. of Physics University of Surrey Guildford, GU2 7XH
Core-excited states in 101 Sn Darek Seweryniak, ANL GS/FMA collaboration.
Recent Nuclear Structure and Reaction Dynamics Studies Using Mutlinucleon Transfer Reactions Paddy Regan Dept. of Physics University of Surrey,UK
The changing structure of 160 Er from low to ultrahigh spin J. Ollier Daresbury Laboratory.
Electromagnetic moments for isomeric states in nuclei far from stability in nuclei far from stability NIPNE Bucharest ↔ INFN LNL Legnaro 10 experiments.
Symmetries and collective Nuclear excitations PRESENT AND FUTURE EXOTICS IN NUCLEAR PHYSICS In honor of Geirr Sletten at his 70 th birthday Stefan Frauendorf,
Sun The excitation and decay of nuclear isomers Phil Walker CERN and University of Surrey, UK.
Lecture 23: Applications of the Shell Model 27/11/ Generic pattern of single particle states solved in a Woods-Saxon (rounded square well)
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Shell model Notes: 1. The shell model is most useful when applied to closed-shell.
Horizontal Evaluation (Topical Review) on K-Isomers in Deformed Nuclei Filip G. Kondev 17 th NSDD Network meeting, St. Petersburg, Russia, 2007 Nuclear.
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
High-precision mass measurements below 48 Ca and in the rare-earth region to investigate the proton-neutron interaction Proposal to the ISOLDE and NToF.
Dipa Bandyopadhyay University of York
Exotic neutron-rich nuclei
Determining the limits to K isomerism Phil Walker.
g-ray spectroscopy of the sd-shell hypernuclei
超重原子核的结构 孙 扬 上海交通大学 合作者:清华大学 龙桂鲁, F. Al-Khudair 中国原子能研究院 陈永寿,高早春 济南,山东大学, 2008 年 9 月 20 日.
Determining Reduced Transition Probabilities for 152 ≤ A ≤ 248 Nuclei using Interacting Boson Approximation (IBA-1) Model By Dr. Sardool Singh Ghumman.
Workshop Spiral II - Caen 4-6th October 2005
The role of isospin symmetry in medium-mass N ~ Z nuclei
Content of the talk Exotic clustering in neutron-rich nuclei
Shape parameterization
Tutor: Prof. Yang Sun (孙扬 教授)
Georgi Georgiev CSNSM, Orsay, France
Search for key nuclear structure states below 132Sn
Properties of neutron-rich hafnium high-spin isomers: P-325
Evolution of octupole collectivity in 221Th
Emmanuel Clément IN2P3/GANIL – Caen France
100 years of nuclear isomers:
Beta and isomer delayed spectroscopy of neutron-rich Dy to Os Nuclei: Mapping shape evolution and Quadrupole collectivity at large neutron excess. Paddy.
Alpha Decay Readings Nuclear and Radiochemistry: Chapter 3
ISOLDE Workshop and Users Meeting 2017
Irina Stefanescu1, O. Ivanov1, J. Van de Walle1, N. Patronis1, D
Systematic study of Z = 83 nuclei: 193,194,195Bi
In-beam and isomer spectroscopy in the third island of inversion at EXOGAM+VAMOS E.Clément (GANIL)
Isomers and shape transitions in the n-rich A~190 region:
Nuclear Chemistry CHEM 396 Chapter 4, Part B Dr. Ahmad Hamaed
Lecture 5-6 xxxxxxx.
2Joint Institute for Nuclear Research, Dubna , Russia
Feeding of low-energy structures with different deformations by the GDR decay: the nuBall array coupled to PARIS M. Kmiecik, A. Maj, B. Fornal, P. Bednarczyk.
Introduction Calculations for the N=7 isotones Summary
PHL424: Shell model with residual interaction
(Lawrence Berkeley National Laboratory)
High spin physics- achievements and perspectives
Rotational Spectroscopy
Nuclei at the Extremes of Spin: The Superdeformed Bands in 131,132Ce
Investigation of 178Hf – K-Isomers
Shape-coexistence enhanced by multi-quasiparticle excitations in A~190 mass region 石跃 北京大学 导师:许甫荣教授
108Sn studied with intermediate-energy Coulomb excitation
Presentation transcript:

The excitation and decay of nuclear isomers 2. Isomer decay rates Phil Walker CERN and University of Surrey, UK ● issues from yesterday ● isomer types ● isomers and the shell model ● K isomers ● K-isomer decay rates

Issues from yesterday 1. Parity mixing in γ decay: 180mHf 8- isomer J.R. Stone et al., Phys. Rev. C76 (2007) 025502 at CERN-ISOLDE 2. Isomer de-excitation by Coulex: 68mCu beam (722 keV, 4 min. isomer) interacting with 120Sn I. Stefanescu et al., Phys. Rev. Lett. 98 (2007) 122701 at CERN-ISOLDE 3. Isomer discovery by laser spectroscopy 80mGa and 80gGa seen with laser spectroscopy (with no decay required) B. Cheal et al., Phys. Rev. C82 (2010) 051302(R) at CERN-ISOLDE 4. Isomer discovery in a Penning trap 65mFe and 65gFe seen in a Penning trap (with no decay required) M. Block et al., Phys. Rev. Lett. 100 (2008) 132501 at NSCL 5. Longest-lived and shortest-lived ground states M2 + E2

shortest: 19Mg 4 ps, 2p decay [PRL99(2007)182501] Issues from yesterday 1. Parity mixing in γ decay: 180mHf 8- isomer J.R. Stone et al., Phys. Rev. C76 (2007) 025502 at CERN-ISOLDE 2. Isomer de-excitation by Coulex: 68mCu beam (722 keV, 4 min. isomer) interacting with 120Sn I. Stefanescu et al., Phys. Rev. Lett. 98 (2007) 122701 at CERN-ISOLDE 3. Isomer discovery by laser spectroscopy 80mGa and 80gGa seen with laser spectroscopy (with no decay required) B. Cheal et al., Phys. Rev. C82 (2010) 051302(R) at CERN-ISOLDE 4. Isomer discovery in a Penning trap 65mFe and 65gFe seen in a Penning trap (with no decay required) M. Block et al., Phys. Rev. Lett. 100 (2008) 132501 at NSCL 5. Longest-lived and shortest-lived ground states M2 + E2 longest: 128Te 7.2x1024 y, 2β- decay shortest: 19Mg 4 ps, 2p decay [PRL99(2007)182501]

Extreme isomers decay rates vary over at least 32 orders of magnitude long half-life: 180Ta, 9–, 75 keV, >1016 y high spin/energy*: 212Rn, 38+, 13 MeV, 12 ns low energy: 229Th, 3/2+, 8 eV, ~10 h? p rich: 94Ag, 21+, 5.8 MeV, 300 ms n rich: 130Cd, 8+, 2.1 MeV, 220 ns high mass: 270Ds, 10–, 1 MeV, 6 ms PRC 2006 PLB 2008 PRL 2007 Nature 2006 EPJA 2001 decay rates vary over at least 32 orders of magnitude * unbound to both p and n emission

isomer types energy K traps K β yrast line shape traps yrast traps I lowest energy for a given spin I spin I(I+1) [Walker and Dracoulis, Physics World (Feb 1994) 39]

high-spin isomer types seniority isomer K isomer E4 decay E3 decay 7h 31y 93Mo 178Hf yrast traps => long lived

high-spin isomer types seniority isomer K isomer E4 decay E3 decay 7h 31y 93Mo 178Hf seniority isomer K isomer 190ns E1 decay 4s E2 decay 178Hf 92Mo

Isomers and the shell model Low-lying isomers => single-particle spin differences => test of shell model (other non-isomeric single-particle states are in principle just as useful for testing the shell model, but only if they can be identified in the first place) This is just as true now, in regions of shell changes, as it was historically.

neutron h11/2 isomers (β decays) Z = 48 isotopes figure from: Huck et al., Phys. Rev. C40 (1989) 1384

neutron h11/2 isomers Z = 48 isotopes Nilsson diagram 1.8 s 3.4 h figure from: Huck et al., Phys. Rev. C40 (1989) 1384

neutron (h11/2)-2 10+ isomers (γ decays) N = 80 isotones Valiente-Dobon et al., Phys. Rev. C69 (2004) 024316

proton and neutron (g9/2)-2 8+ isomers 590 ns 480 ns 220 ns Jungclaus et al., PRL99 (2007) 132501

212Rn 212Rn126 Highest spin isomer I = (38), 12 ns states above 86 triple neutron core excitations 212Rn 12.5 MeV I = (38), 12 ns 212Rn126 states above 5.4 MeV 204Hg(13C, 5n) 86 CAESAR at ANU 5.4 MeV

Segre chart with isomers K isomers in deformed nuclei adapted from Walker and Dracoulis, Nature 399 (1999) 35

178W bands K isomers and rotational bands in a deformed nucleus 1999 K isomers and rotational bands in a deformed nucleus 178W bands 8.8 MeV 6.6 MeV data from GAMMASPHERE at Berkeley: 170Er(13C, 5n) 5.3 MeV 3.7 MeV Note: 175Hf holds the record for the highest spin/energy K isomer (see previous lecture)

Hf-178 new level scheme ~2Δ ~2Δ 4-quasiparticle isomer at 2.4 MeV 72 106 [Smith et al., Phys. Rev. C68 (2003) 031302(R)]

Single-particle energies 178Hf has N=106, Z=72, β2~0.25 Single-particle energies 106 72 [F.R. Xu et al., Phys. Lett. B435 (1998) 257] Woods-Saxon potential

half-lives vs A multi-quasiparticle K isomers > 5ns 178Hf • 2-, 3-qp 4-, 5-qp 6-, 7-qp 8-, 9-qp excludes 2-qp isomers in odd-odd nuclei Walker, AIP-CP819 (2006) 16

K isomers - structure deformed shell model - energies - transition rates?

K-forbidden γ-ray transitions collective I=R=8 degree of forbiddenness, ν = ΔK – λ λ=1 transition is 7-fold forbidden (ν = 7) symmetry I=K=8 axis non-collective angular momentum has both magnitude and direction!

transition-rate hindrance factors Weisskopf hindrance degree of K forbiddenness reduced hindrance (hindrance per degree of K forbiddenness) contains the physics

Weisskopf transition rates

partial γ-ray half-life: T1/2 level isomer other branches 100-x-y % γ-ray branch x % electron branch y % γ T1/2 = T1/2 . 100/x level

178Hf Hf-178 new level scheme 72 4-quasiparticle isomer M4 E3 E5 E1 0.005% M4 E3 E5 495-keV gate E1 2-quasiparticle isomer 178Hf M2 72 data from the 8π spectrometer at TRIUMF [Smith et al., Phys. Rev. C68 (2003) 031302(R)]

↑ Hf-178 hindrances 178Hf K=8 K=16 E1 M2 E3 M4 E5 ↑

Löbner systematics Löbner, Phys. Lett. B26 (1968) 369 1 102 104 106 108 1010 1 102 104 106 108 1010 Löbner, Phys. Lett. B26 (1968) 369

Löbner systematics from the gradients: for each additional degree of K forbiddenness, the hindrance increases by a factor of ~100 1 102 104 106 108 1010 1 102 104 106 108 1010 Löbner, Phys. Lett. B26 (1968) 369

2- and 3-qp E2 reduced hindrances lower fν => more K mixing (Coriolis and/or γ deformation) Walker, J. Phys. G16 (1990) L233 Dracoulis et al., Phys. Rev. C71 (2005) 044326

2- and 3-qp E2 reduced hindrances increasing deformation lower fν => more K mixing (Coriolis and/or γ deformation) NpNn: product of valence nucleon numbers, e.g. 174Yb (+) has Z=70, Np=12; N=104, Nn=22 => NpNn=264 Walker, J. Phys. G16 (1990) L233

2- and 3-qp E2 reduced hindrances 171Tm Walker et al. Phys. Rev. C79 (2009) 044321 increasing deformation NpNn: product of valence nucleon numbers, e.g. 174Yb (+) has Z=70, Np=12; N=104, Nn=22 => NpNn=264

171Tm 1.7 μs 171Tm isomer ΔE = 11 keV (V=12 eV) Walker et al. Phys. Rev. C79 (2009) 044321

171Tm 1.7 μs 171Tm isomer chance near-degeneracy of two 19/2+ levels ΔE = 11 keV (V=12 eV) 171Tm isomer chance near-degeneracy of two 19/2+ levels Walker et al. Phys. Rev. C79 (2009) 044321

K-mixing mechanisms ■ chance near-degeneragies – hard to predict! ■ Coriolis mixing (rotational – orientation change) ■ γ tunnelling (vibrational – shape change) ■ level density (thermal – statistical) K R

K-mixing mechanisms ■ chance near-degeneragies – hard to predict! ■ Coriolis mixing (rotational – orientation change) ■ γ tunnelling (vibrational – shape change) ■ level density (thermal – statistical) larger deformation (NpNn) => less Coriolis mixing K R

f(nu) vs E(K)-E(R)/0.85 4-,5-,7-,9-qp isomers A~180 region level-density dependence E2 and E3 transitions 179Ta (49/2) [Kondev] Walker et al., Phys. Lett. B408 (1997) 42; Acta Phys. Pol. 36 (2005) 1055 174Yb (14) [Dracoulis] 175Hf (57/2) [Kondev] increasing level density (+Δ= 0.9 for odd-mass)

Where next?

Where next? - need for quantitative theory - compare with other mass regions - make and test predictions for exotic nuclei

2-qp E2 reduced hindrances even-even nuclides, Kπ = 6+, 8+, 10+ isomers 244Cm 162Dy: Swan et al., Phys. Rev. C83 (2011) 034322 190W: Lane et al., Phys. Rev C82 (2010) 051304(R) ● ● 134Ce increasing deformation fig. updated from Walker, Nucl. Phys. A834 (2010) 22c

170Dy: doubly mid-shell 170Dy ? E2 transitions Kπ = 6+ isomers 172Er ? P.H. Regan et al., Phys. Rev. C65 (2002) 037302 A.K. Rath et al., Phys. Rev. C68 (2003) 044315 E2 transitions Kπ = 6+ isomers 172Er ? 174Yb predictions

K-forbidden γ-ray transitions Summary K-forbidden γ-ray transitions fν dependence: NpNn (E2 transitions, 2-qp) Coriolis effects γ tunnelling level-density (multi-qp) chance near-degeneracy theory needed, but predictions possible n-rich predictions – long-lived isomers

K-forbidden γ-ray transitions Summary K-forbidden γ-ray transitions fν dependence: NpNn (E2 transitions, 2-qp) Coriolis effects γ tunnelling level-density (multi-qp) chance near-degeneracy theory needed, but predictions possible n-rich predictions – long-lived isomers Other decay modes (p, n, α, fission): tomorrow’s lecture/seminar

“But you’ve no idea what a difference it makes, mixing it with other things” Lewis Carroll, Through the Looking Glass (Macmillan and Co., London, 1872)

γ tunnelling γ = 0o γ = -60o γ = -120o potential energy surface prolate γ = -60o oblate Narimatsu et al., Nucl. Phys. A601 (1996) 69 γ = -120o

tunnelling 174Yb (K=6) E2 γ-tunnelling description of K-isomer decay A~180 region 174Yb (K=6) see Dracoulis et al. Phys. Rev. C71 (2005) 044326 isomer→gsb E2 transitions Chowdhury et al., Nucl. Phys. A485 (1988) 136