Index 1 PART AC-DC Converter PZT Power Management Unit mc1 mc2 Thermoelectric Generator Charge Pump Load mc1 mc2 MPPT Control Unit En Vv Vt.

Slides:



Advertisements
Similar presentations
Op-Amp- An active circuit element designed to perform mathematical operations of addition, subtraction, multiplication, division, differentiation and.
Advertisements

Case Study: NJM2309 Application Circuit Design (PWM Step-down Converter) All Rights Reserved Copyright (C) Bee Technologies Corporation
We have so far seen the structure of a differential amplifier, the input stage of an operational amplifier. The second stage of the simplest possible operational.
EE435 Final Project: 9-Bit SAR ADC
Project by Santiago Yeomans, Chad Cummins, Gboyega Adeola Guitar Signal Transmitter.
PLC front-end Design Review Curtis Mayberry
ECE4430 Project Presentation
Microelectronics System Design for Chronic Brain Implants ECEN 5007 S. Johnson, V. Ganesan
Department of Information Engineering357 Operation amplifier The tail, large impedance gives high CMRR Mirror as active load. High gain Follower as buffer.
Part I: Amplifier Fundamentals
Types of Operational Amplifiers
Introduction to Op Amp Circuits ELEC 121. April 2004ELEC 121 Op Amps2 Basic Op-Amp The op-amp is a differential amplifier with a very high open loop gain.
Analogue Electronics II EMT 212/4
Operational Amplifier based Charge Amplifiers
Flow sensor circuitry Eduard Stikvoort 00/1A The work was done in Philips Reaearch Eindhoven.
International Symposium on Low Power Electronics and Design Switched-Capacitor Boost Converter Design and Modeling for Indoor Optical Energy Harvesting.
Digital to Analog Converter for High Fidelity Audio Applications Matt Smith Alfred Wanga CSE598A.
A. L. Wicks Dept. of Mechanical Engineering Virginia Tech 1 Advanced Instrumentation By A.L. Wicks Department of Mechanical Engineering Virginia Tech A.
Differential Amplifiers.  What is a Differential Amplifier ? Some Definitions and Symbols  Differential-mode input voltage, v ID, is the voltage difference.
FULLY DIFFERENTIAL OPAMP Eduardo Picatoste Calorimeter Electronics Upgrade Meeting.
Electronics Principles & Applications Fifth Edition Chapter 9 Operational Amplifiers ©1999 Glencoe/McGraw-Hill Charles A. Schuler.
Jean-Marie Bussat – October 16, FPPA2000 Bias generator.
1 Cosmic Vision Instrumentation ASIC R. Jansen TEC-EDM 19 January 2010.
ECE4430 Project Presentation
W3,4: Operational Amplifier Design Insoo Kim, Jaehyun Lim, Kyungtae Kang Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The.
Operational Amplifier 555 Timers Term 4 Projects.
Data Acquisition ET 228 Chapter 15 Subjects Covered Analog to Digital Converter Characteristics Integrating ADCs Successive Approximation ADCs Flash ADCs.
Basic Electronics Ninth Edition Basic Electronics Ninth Edition ©2002 The McGraw-Hill Companies Grob Schultz.
Unit 8 Operational Amplifier. Objectives: Ideal versus practical operational amplifier Performance parameters Some applications –Peak detector –Absolute.
Common-Collector Amplifier Section A note about Human Ear Human can hear between 12 Hz and 20 KHz. The range begins to shrink at the age of.
DC-DC Fundamentals 1.5 Converter Control. What is Converter Control? A converter can provide a constant voltage output at various condition because of.
6.376 Final Project: Low-Power CMOS Measurement System for Chemical Sensors Stuart Laval December 8, 2003.
Submarine Sonar Detection
CMOS 2-Stage OP AMP 설계 DARK HORSE 이 용 원 홍 길 선
2. CMOS Op-amp설계 (1).
Technical status of the Gossipo-3 : starting point for the design of the Timepix-2 March 10, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
HW1_Design of BGR 집적회로설계연구실 유성목.
MSNC (Multi-Harvested Self Powered Sensor Node Circuit )
CoCo – Cockroft Walton Feedback Control Circuit Deepak G, Paul T, Vladimir G 1D. Gajanana ET On the behalf of.
Index 1 PART C1 C2 Csto 2 PART ParamaterValue V OC 2.93V I SC 141.7uA P MAX uW R MPP 15kΩ V MPP 1.46V.
ET5 June 2007 model answers. A.B A + C S 6 ( 1 0 0) and S 7 ( 1 0 1)
Vladimir Gromov, NIKHEF, Amsterdam. GOSSIPO-3 Meeting March 17, Specification of the On-pixel LDO for powering of the local oscillators.
- TMS - Temperature Monitoring System in Topix Olave Jonhatan INFN section of Turin and Politecnico P PANDA Collaboration Meeting December 9 th
Operational amplifier
Audio Power Amplifier Detailed Design
BIOELECTRONICS 1 Lec 9: Op Amp Applications By
s.p.b. Patel engineering collage
Operational Amplifier
Si2 PICTURE SPECIFICATIONS FEATURES Frequency Response
Analogue Electronics Circuit II EKT 214/4
Analogue Electronic 2 EMT 212
Variable Capacitance Transducers
Electronic Devices Ninth Edition Floyd Chapter 12.
The open loop gain of this op-amp is 105 and the bandwidth is 10 Hz
EE 597G/CSE 578A Final Project
Inverters Dr John Fletcher.
In The Name of God Design of A Sample And Hold Circuit Based on The Switched Op-Amp Techniques M.Rashtian: Faculty of Civil Aviation Technology College.
ALICE ITS Upgrade : Pixel chip design
Operational Amplifier Design
Vibration Energy Harvesting Circuit to Power Wireless Sensor Nodes
Lesson 3: op amp fundamentals and open loop applications
دکتر سعید شیری & کتابMICROELECTRONIC CIRCUITS 5/e Sedra/Smith
Op Amp Specs and Test Benches
Turning photons into bits in the cold
Differential Amplifier
Common-Collector Amplifier
LOW VOLTAGE OP AMPS We will cover: Methodology:
10k 20k Vin Vout H3 What is the gain?
DARE180U New Analog IPs Laurent Berti AMICSA 2018, LEUVEN.
Presentation transcript:

Index

1 PART 01

01 AC-DC Converter PZT Power Management Unit mc1 mc2 Thermoelectric Generator Charge Pump Load mc1 mc2 MPPT Control Unit En Vv Vt

2 PART 02

02

VDD=1.5tt Gain dB 3-dB Fre Hz UGF KHz

02 VDD=1.5tt Idiss 83.76nA

02 VDD=1.5tt ICMR 0.8~1.5V

02 VDD=1.5tt CMRR 84.66dB

02 VDD=1.5tt PSRR dB

02 VDD=1.5tt PSRR dB

02 VDD=1.5tt Offset V 32.38uV

02

VDD=3tt Gain 74.01dB 3-dB Fre 10.47kHz UGF 1.86MHz

02 VDD=3tt Idiss 2.43uA

02 VDD=3tt ICMR 1.33~3V

02 VDD=3tt CMRR 97.14dB

02 VDD=3tt PSRR dB

02 VDD=3tt PSRR dB

02 VDD=3tt Offset V 47.61uV

06 VDD1.5V3V Gain(dB) Band Width(Hz) k UGF(kHz) M ICMR(V) 0.8~1.5V1.33~3V Offset Voltage(uV) PSRR(dB) CMRR(dB) Current Consumption(A) 83.76n2.43u

3 PART 03

03

ttssff Output Voltage & VDD sensitivity

03 tt ff ss Temperature Coefficient

03 tt ff ss Current Consumption

03 VDD = 1.3V

03 VDD=1.3VSSTTFF Output Voltage(mV) VDD sensitivity(%/V) Temperature ℃ ~80 ℃ (ppm/ ℃ ) Current Consumption(nA)

03 VDD=1.5VSSTTFF Output Voltage(mV) VDD sensitivity(%/V) Temperature ℃ ~80 ℃ (ppm/ ℃ ) Current Consumption(nA)

03

ssttff Output Current

02 ttff ss VDD sensitivity

03 ffttss Temperature Coefficient

03 VDD = 1.3V

03 VDD=1.3VSSTTFF Output Current(nA) VDD sensitivity(%/V) Temperature ℃ ~80 ℃ (ppm/ ℃ ) Current Consumption(nA)

02 VDD=1.5VSSTTFF Output Current(nA) VDD sensitivity(%/V) Temperature ℃ ~80 ℃ (ppm/ ℃ ) Current Consumption(nA)

03

I OSC = 47.8nA I AMP = 143.3nA I comp = nA

03

1.04V

03 CornersSSTTFF Starting Voltage of POR (V) Temperatures Starting Voltage of POR (V)

03 8 :1 W 4u L 2u W 1u L 25u W 1u L 50u W 30u L

03

Cycle (ms) Frequency (Hz) 95.2 Duty cycle (%) 55.05

03 I DISS (nW) 55.5

03

Cycle (ms) Frequency (Hz) 94.2 Duty cycle (%) 55.1

03 I DISS (nW) 56

03

CLK MC 128 cycle CLK Cycle (ms) MC Cycle (s) 1.367

03

사이즈변화

03 V SP,IN MC V SP,OUT

03 Discharged Voltage Sampling Voltage

03 Capacitance(pF) Sampling Voltage (mV) Discharge Voltage (uV) Δ 4.05Δ 0.94Δ 0.33

03

V SP,IN MC V SP,OUT

03 Discharged Voltage = 0.64uV Sampling Voltage = mV

03

Gain dB 3dB-freq Hz UGF kHz PM 82°

03 ICMR mV ICMR- 15.5mV

03 DC Sweep Output Swing 6.67mV~805mV

03 PSRR+ PSRR- PSRR+ 70dB PSRR- 82dB

03 CMRR 70dB

03 VDD=1.3VSSTTFF Gain(dB) Band Width(Hz) UGF(kHz) Phase Margin(°) ICMR(mV) 13.5~ ~ ~510.3 Output Swing(mV) 8~ ~ ~782.3 PSRR(dB) CMRR(dB) Current Consumption(uA)

03 VDD=1.3V-20°C27°C80°C Gain(dB) Band Width(Hz) UGF(kHz) Phase Margin(°) ICMR(mV) 12.5~ ~ ~470.6 Output Swing(mV) 4.9~ ~8059.3~760 PSRR(dB) CMRR(dB) Current Consumption(uA)

03 Gain 62.2 dB 3dB-freq Hz UGF kHz PM 83°

03 ICMR mV ICMR- 13.2mV

03 DC Sweep Output Swing 6.74mV~819mV

03 PSRR+ PSRR- PSRR+ 120dB PSRR- 82.5dB

03 CMRR 89dB

03 VDD=1.5VSSTTFF Gain(dB) Band Width(Hz) UGF(kHz) Phase Margin(°) 8283 ICMR(mV) 6.1~ ~ ~695.8 Output Swing(mV) 7.85~ ~8195.8~796.5 PSRR(dB) CMRR(dB) Current Consumption(uA)

03 VDD=1.5V-20°C27°C80°C Gain(dB) Band Width(Hz) UGF(kHz) Phase Margin(°) ICMR(mV) 10~ ~ ~656.6 Output Swing(mV) 4.8~ ~8199.4~771.6 PSRR(dB) CMRR(dB) Current Consumption(uA)

03

Gain 5.89 dB Magnitude 1.97 V/V 3dB-freq kHz

03 Output Swing 16.6mV~772.8mV

03 Output Swing 550.5mV~772.8mV Input Swing 275.2mV~474.9mV

03 VDD=1.3VSSTTFF Gain(dB) 동작 안 함 Magnitude (V/V) Band Width(Hz) Output Swing(mV) 19.75~ ~772.8 Current Consumption(uA)

03 VDD=1.3V-20°C27°C80°C Gain(dB) 동작 안 함 5.896dB Magnitude (V/V) Band Width(kHz) Output Swing(mV) 16.6~ ~928.6 Current Consumption(uA)

03 Gain 5.95 dB Magnitude 1.98 V/V 3dB-freq kHz

03 Output Swing 16.94mV~796mV

03 Output Swing mV~796mV Input Swing 275.2mV~474.48mV

03 VDD=1.5VSSTTFF Gain(dB) 동작 안 함 Magnitude (V/V) Band Width(Hz) Output Swing(mV) 20.14~ ~796 Current Consumption(uA)

03 VDD=1.5V-20°C27°C80°C Gain(dB) 동작 안 함 Magnitude (V/V) Band Width(Hz) Output Swing(mV) 16.94~ ~954.5 Current Consumption(uA)

03

MC Sampler Out V MPP.MAX /4 Amp Out CLK V MPP.MIN /4

03

Gain 78.1 dB 3dB-freq Hz UGF kHz

03 Hysteresis 20mV

03 ICMR+ 400mV ICMR mV

03 PSRR+ 80.1dB PSRR- 98.3dB PSRR- PSRR+

09 CMRR 98dB

09 VDD=1.3VSSTTFF Gain(dB) Band Width(Hz) UGF(kHz) Hysteresis(mV) 20 ICMR(mV) 6.3~ ~4006.1~490.8 PSRR(dB) CMRR(dB) Current Consumption(nA)

09 VDD=1.3V324-20°C27°C80°C Gain(dB) Band Width(Hz) UGF(kHz) Hysteresis(mV) 20 ICMR(mV) 6.3~ ~ ~464.8 PSRR(dB) CMRR(dB) Current Consumption(nA)

09 Gain 80.4 dB 3dB-freq Hz UGF kHz

09 Hysteresis 20mV

09 ICMR+ 565mV ICMR- 10mV

09 PSRR+ 80.6dB PSRR- 95.6dB PSRR- PSRR+

09 CMRR 129.2dB

09 VDD=1.5VSSTTFF Gain(dB) Band Width(Hz) UGF(kHz) Hysteresis(mV) 20 ICMR(mV) 5.6~48210~5655.6~640.1 PSRR(dB) CMRR(dB) Current Consumption(nA)

09 VDD=1.5V-20°C27°C80°C Gain(dB) Band Width(Hz) UGF(kHz) Hysteresis(mV) 20 ICMR(mV) 5.6~ ~5656.3~640 PSRR(dB) CMRR(dB) Current Consumption(nA)

09 비교기 출력 MC1MC2 1 (VIB>TEG) MC1 0 (VIB<TEG) 1MC

4 PART 04

04

Type 1 Schematic C L =1nF, R L =10MΩ Frequency=800KHz Vin=1.5V

04 Type 2 Schematic C L =1nF, R L =10MΩ Frequency=800KHz Vin=1.5V

04 Type 3 Schematic C L =1nF, R L =10MΩ Frequency=800KHz Vin=1.5V

04 STAGE SW SIZE – W (m) Cap (F) Total Cap (F) Vcp (V) Type1 55u2p8p3.06 Type2 45u2p8p4.02 Type3 55u2p8p3.25 R L =10MΩ C L =1nF, Vin=1.5V, Frequency=800KHz

04 Type 2 > Type1 > Type 3 Type2 Type3 Type1 Type2 Type3

04 C L =1nF, Vin=1.5V, Frequency=800KHz Type 2

04 C L =1nF, R L =10MΩ, Frequency=800KHz Type 2

04 C L =1nF, R L =10MΩ, Vin=1.5V Type 2

04 Voltage Booster Test Schematic Total (Voltage Booster) Schematic

04 Buffer Oscillator

KHz Clock 발생 전류소모 : 3.444uA

04 Ideal Clock Test 3.84V 3.6V C L =1nF R L =10MΩ Vin=1.5V

5 PART 05

05

Vref=772.16mV TT Vref=666.9mV FF Vref=877.6mV SS

05 Negative TC =-60.94ppm/℃ Positive TC =52.06ppm/℃ TT FF SS TC=-180.7ppm/℃ TC=162.8ppm/℃

05 TT FF SS VDD=1.8VSSTTFF ㅿ V(2~3V) 5.9mV5.4mV5mV VDD sensitivity 0.7%/V 0.8%/V

05 TT FF SS 291.7nA 427.9nA 200.5nA

05 TT FF SS Iref=166.7nA Iref=244.8nA Iref=114.3nA

05 TC=5578.6ppm/℃ TT FF SS TC=7140.3ppm/℃ TC=4370.5ppm/℃

05 TT FF SS VDD=1.8VSSTTFF ㅿ V(2~3V) 6.1nA5.2nA4.5n VDD sensitivity 2.5%/A3.1%/A3.9%/A

05 VDD=1.8VSSTTFF Output Voltage(mV) VDD sensitivity(%/V) Temperature ℃ ~80 ℃ (ppm/ ℃ ) Current Consumption(nA)

05 VDD=1.8VSSTTFF Output Current(nA) VDD sensitivity(%/A) Temperature ℃ ~80 ℃ (ppm/ ℃ )

05

Gain=74.3dB 3-dB Fre=172.7kHz UGF=16.6MHzf

05 ICMR=0~785.5mV

05 ICMR=0~785.5mV

05 PSRR(+)=128dBPSRR(-)=158dB

05 CMRR=93.8dB

05 Hysteresis=10mV

05 VDD=1.8VSSTTFF Gain 73.17dB74.3dB 75.14dB 3 dB-Freq 170kHz172.7kHz 141.6kHz UGF 14MHzf16.6MHzf 16.7MHzf ICMR 0~657.4mV0~785.5mV0~850mV PSRR(+) 116.3dB128dB142.6dB PSRR(-) 156dB158.2dB159dB CMRR 79.4dB93.8dB111.7dB Hysteresis 10mV

05 VDD=1.8V -20 ℃ 27 ℃ 80 ℃ Gain 74.72dB74.3dB 73.74dB 3 dB-Freq 128.8kHz172.7kHz 199.5kHz UGF 15.14MHzf16.6MHzf 17MHzf ICMR 0~836.5mV0~785.5mV0~638mV PSRR(+) 142.4dB128dB116.7dB PSRR(-) 160.4dB158.2dB155.2dB CMRR 110.1dB93.8dB81.3dB Hysteresis 10mV

05

TT FF SS

05 VDD=3VSSTTFF Starting voltage Of POR(V)

05

VLoad EN Vref POR VDD

05 EN MIN OUT MIN MAX OUT MAX

6 PART 06

06 1. S. Abelaziz 외, “A Low Start-up Voltage Charge Pump for Energy Harvesting Application”, Faculty of Engineering, Cairo University, 2012, p 윤은정, “Design of Triple-inputEnergy Harvesting Circuit with MPPT Control”, 2012, pp pp 위의 책, p 위의 책, p 위의 책, pp, 박진영, “Charge pump 의 비교 분석과 저전압용 고효율 Charge pump 설 계 및 분석 ”, 2007, p.56.