Sigma and Pi bonding and Molecular Orbital Theory.

Slides:



Advertisements
Similar presentations
Chapter 9 Molecular Geometries and Bonding Theories
Advertisements

Chapters Bonding.
Molecular Geometries and Bonding Theories. Molecular Shapes The shape of a molecule plays an important role in its reactivity. The shape of a molecule.
Molecular Geometries and Bonding Unit 10: Molecular Geometries and Bonding Theories Dr. Jorge L. Alonso Miami-Dade College – Kendall Campus Miami, FL CHM.
Molecular Geometries and Bonding Molecular Geometries and Bonding Chapter 9 Molecular Geometries and Bonding Theories Chemistry, The Central Science, 10th.
Molecular Geometries and Bonding © 2009, Prentice-Hall, Inc. Chapter 9 Molecular Geometries and Bonding Theories Chemistry, The Central Science, 11th edition.
Molecular Geometries and Bonding Chapter 9 Molecular Geometries and Bonding Theories.
Chapter 9 Molecular Geometries and Bonding Theories.
Polarity and Hybrid Orbitals Chapter 9. Polarity In Chapter 8 we discussed bond dipoles. But just because a molecule possesses polar bonds does not mean.
Chapter 101 Bonding and Molecular Structure Chapter 10.
Chapter 9 Molecular Geometries and Bonding Theories
Chapter 9 Molecular Geometries and Bonding Theories.
Molecular Geometries and Bonding(Ch 9)
Chemistry 100 Chapter 9 Molecular Geometry and Bonding Theories.
Chapter 9 Covalent Bonding: Orbitals Hybridization The mixing of atomic orbitals to form special orbitals for bonding. The atoms are responding as needed.
COVALENT BONDING: ORBITALS Chapter 9. Hybridization The mixing of atomic orbitals to form special molecular orbitals for bonding. The atoms are responding.
Chapter 9 Molecular Geometry and Bonding Theories
PowerPoint to accompany Chapter 8 Part 2 Molecular Geometry and Bonding Theories.
Molecular Geometries and Bonding © 2009, Prentice-Hall, Inc. Sections Molecular Geometries and Bonding Theories Chemistry, The Central Science,
Chapter 9 Molecular Geometries and Bonding Theories
Molecular Geometries and Bonding © 2009, Prentice-Hall, Inc. Chapter 9 Molecular Geometries and Bonding Theories Chemistry, The Central Science, 11th edition.
Chapter 9 Molecular Geometry and Bonding Theories
Polarity By adding the individual bond dipoles, one can determine the overall dipole moment for the molecule.
Molecular Geometries and Bonding © 2009, Prentice-Hall, Inc. Molecular Shapes The shape of a molecule plays an important role in its reactivity. By noting.
AP Chapter 9 Molecular Geometry and Bonding Theories HW:
Bonding - HL Orbital overlap, hybridization and resonance.
© 2012 Pearson Education, Inc. Chapter 9 Molecular Geometries and Bonding Theories John D. Bookstaver St. Charles Community College Cottleville, MO Lecture.
Chapter 9 Molecular Geometries and Bonding Theories.
Molecular Geometries and Bonding Chapter 9 Molecular Geometries and Bonding Theories.
Molecular Geometries and Bonding Chapter 9 Molecular Geometries and Bonding Theories Chemistry, The Central Science, 10th edition Theodore L. Brown, H.
AP CHEMISTRY CHAPTER 9 BONDING 1. Hybridization 2.
Molecular Geometries and Bonding Theories. Molecular Shapes The shape of a molecule plays an important role in its reactivity. The shape of a molecule.
Chapter 9 Molecular Geometries and Bonding Theories
© 2009, Prentice-Hall, Inc. Chapter 9 Molecular Geometries and Bonding Theories.
Molecular Geometries and Bonding Chapter 9 (Part 2) Molecular Geometries and Bonding Theories Chemistry, The Central Science, 10th edition Theodore L.
Molecular Geometries and Bonding Chapter 9 Molecular Geometries and Bonding Theories.
Molecular Geometries and Bonding Chapter Bonding Theory Valence Bond Theory Molecular Orbital Theory Complete Ch 9 problems # 29, 36, 38, 39, 42,
Hybrid Orbitals With hybrid orbitals the orbital diagram for beryllium would look like this. The sp orbitals are higher in energy than the 1s orbital but.
Molecular Geometries and Bonding © 2009, Prentice-Hall, Inc. Chapter 9 Molecular Geometries and Bonding Theories Chemistry, The Central Science, 11th edition.
Molecular Geometries and Bonding © 2009, Prentice-Hall, Inc. Chapter 9 Molecular Geometries and Bonding Theories Chemistry, The Central Science, 11th edition.
Molecular Geometries and Bonding Chapter Bonding Theory Valence Bond Theory Molecular Orbital Theory Complete Ch 9 problems # 29, 36, 38, 39, 42,
VSEPR model for geometry of a molecule or an ion
 The shape of a molecule plays an important role in its reactivity.  By noting the number of bonding and nonbonding electron pairs, we can easily predict.
Molecular Geometries and Bonding Chapter 9 Molecular Geometries and Bonding Theories Chemistry, The Central Science, 10th edition Theodore L. Brown, H.
Tuesday, March 22 nd Take out your notes.
Molecular Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of bonding and nonbonding electron pairs we can.
Chapter 9 Molecular Geometries and Bonding Theories
Overlap and Bonding We think of covalent bonds forming through the sharing of electrons by adjacent atoms. In such an approach this can only occur when.
Chapter 9 Notes AP CHEMISTRY Galster.
Sections 9.4 & 9.5 Molecular Geometries and Bonding Theories
Rules for Predicting Molecular Geometry   1.  Sketch the Lewis structure of the molecule or ion 2.  Count the electron pairs and arrange them in.
Chapter 9 Molecular Geometries and Bonding Theories
Molecular Orbital Theory
Let’s Focus on Valence Bond Theory
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 9 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Chapter 9 Molecular Geometries and Bonding Theories
Chemical Bonding: Valence Bond & Molecular Orbital Theories Chapter 10 Section 4 through 8 of Jespersen 6th ed) Dr. C. Yau Fall
COVALENT BONDING: ORBITALS
Chapter 9 Molecular Geometries and Bonding Theories
Hybrid Orbitals Consider beryllium:
Atomic Structure, Periodicity, and Bonding
Covalent Bonding: Orbitals
Chapter 9 Molecular Geometries and Bonding Theories
Molecular Orbital Theory
Chapter 9 Molecular Geometries and Bonding Theories
DEPARTMENT OF CHEMISTRY
Chapter 9 Molecular Geometries and Bonding Theories
Chapter 9 Molecular Geometries and Bonding Theories
Presentation transcript:

Sigma and Pi bonding and Molecular Orbital Theory

Valence Bond Theory Hybridization is a major player in this approach to bonding. There are two ways orbitals can overlap to form bonds between atoms.

Sigma (  ) Bonds Sigma bonds are characterized by –Head-to-head overlap. –Cylindrical symmetry of electron density about the internuclear axis.

Pi (  ) Bonds Pi bonds are characterized by –Side-to-side overlap. –Electron density above and below the internuclear axis.

Single Bonds Single bonds are always  bonds, because  overlap is greater, resulting in a stronger bond and more energy lowering.

Multiple Bonds In a multiple bond one of the bonds is a  bond and the rest are  bonds.

Multiple Bonds In a molecule like formaldehyde (shown at left) an sp 2 orbital on carbon overlaps in  fashion with the corresponding orbital on the oxygen. The unhybridized p orbitals overlap in  fashion.

Multiple Bonds In triple bonds, as in acetylene, two sp orbitals form a  bond between the carbons, and two pairs of p orbitals overlap in  fashion to form the two  bonds.

Delocalized Electrons: Resonance When writing Lewis structures for species like the nitrate ion, we draw resonance structures to more accurately reflect the structure of the molecule or ion.

Delocalized Electrons: Resonance In reality, each of the four atoms in the nitrate ion has a p orbital. The p orbitals on all three oxygens overlap with the p orbital on the central nitrogen.

Delocalized Electrons: Resonance This means the  electrons are not localized between the nitrogen and one of the oxygens, but rather are delocalized throughout the ion.

Resonance The organic molecule benzene has six  bonds and a p orbital on each carbon atom.

Resonance In reality the  electrons in benzene are not localized, but delocalized. The even distribution of the  electrons in benzene makes the molecule unusually stable.

Molecular Orbital (MO) Theory Though valence bond theory effectively conveys most observed properties of ions and molecules, there are some concepts better represented by molecular orbitals.

Molecular Orbital (MO) Theory In MO theory, we invoke the wave nature of electrons. If waves interact constructively, the resulting orbital is lower in energy: a bonding molecular orbital.

Molecular Orbital (MO) Theory If waves interact destructively, the resulting orbital is higher in energy: an antibonding molecular orbital.

MO Theory In H 2 the two electrons go into the bonding molecular orbital. The bond order is one half the difference between the number of bonding and antibonding electrons.

MO Theory For hydrogen, with two electrons in the bonding MO and none in the antibonding MO, the bond order is 1212 (2 - 0) = 1

MO Theory In the case of He 2, the bond order would be 1212 (2 - 2) = 0 Therefore, He 2 does not exist.

MO Theory For atoms with both s and p orbitals, there are two types of interactions: –The s and the p orbitals that face each other overlap in  fashion. –The other two sets of p orbitals overlap in  fashion.

MO Theory The resulting MO diagram looks like this. There are both  and  bonding molecular orbitals and  * and  * antibonding molecular orbitals.

MO Theory The smaller p-block elements in the second period have a sizeable interaction between the s and p orbitals. This flips the order of the  and  molecular orbitals in these elements.

Second-Row MO Diagrams