MIT Amorphous Materials 4: Phase Change Data Storage Juejun (JJ) Hu 1.

Slides:



Advertisements
Similar presentations
NASA Ames Research Center
Advertisements

By Szymon Jankowski The Future of Disk Drives. Presentation Outline Disk Drive Overview Current Design Limitations Proposed New Architecture New Storage.
These aren’t really ‘properties’ – more like definitions that relate to what’s happening microscopically. The goal here is to relate structure to properties.
EE 230: Optical Fiber Communication Lecture 9 From the movie Warriors of the Net Light Sources.
Amorphous States of Phase Change Materials: Effects of Cooling Rate and Composition Stephen G. Bishop, University of Illinois at Urbana-Champaign, DMR.
G. Palasantzas, W. Broer, B. J. Kooi, J. Knoester Zernike Institute for Advanced Materials, University of Groningen, The Netherlands V. B. Svetovoy MESA+
Phase Change Memory What to wear out today? Chris Craik, Aapo Kyrola, Yoshihisa Abe.
University of Idaho ECE Research Colloquium March 8, 2007 Multi-Layer Phase-Change Electronic Memory Devices Kris Campbell Associate Professor Dept. of.
Amorphous Semiconductors: Synthesis, Characterization and Applications Fei Wang May
Applications. Until very recently silicate glasses were the only type of materials commonly used. Until very recently silicate glasses were the only type.
Presented by Anas Mazady, Cameron Fulton, Nicholas Williams University of Connecticut Department of Electrical and Computer Engineering Thursday, April.
Materials One of the main priorities of CAMELS is the optimization of the chalcogenide material. The PCM operation and reliability are in fact dictated.
Ovonic Unified Memory.
Phase change memory technology Rob Wolters September 2008.
Nanostructured Materials for Thermoelectric Power Generation Richard B. Kaner 1, Sabah K. Bux 1,3, and Jean-Pierre Fleurial 3 1 Department of Chemistry.
Seoul National University, Center for Novel States of Complex Material Research Disorder-to-order induced thermal conductivity change of Ge 2 Sb 2 Te 5.
Multiscale Simulation of Phase Change Memory (PCM) Manjeri P. Anantram, University of Washington, DMR O Ba Sr Si To probe the ultimate scalability.
Structural featureDimension (m) atomic bonding missing/extra atoms crystals (ordered atoms) second phase particles crystal texturing <
NOTE: To change the image on this slide, select the picture and delete it. Then click the Pictures icon in the placeholder to insert your own image. NON.
A Presentation on “OUM “ “(OVONIC UNIFIED MEMORY)” Submitted by: Aakash Singh Chauhan (CS 05101)
Records force & distance. * Calibration “strain gauge” * 6 Samples * What it Means * Video * Results.
Phase Change Memory (PCM)‏ ``640K of memory should be enough for anybody.'' -- Bill Gates.
Literature Review on Emerging Memory Technologies
Phase Change Memory
Magnetic Moments in Amorphous Semiconductors Frances Hellman, University of California, Berkeley, DMR This project looks at the effect of magnetic.
Materials Research Centre Indian Institute of Science, Bangalore Abhishek K. Singh Indian Institute of Science, Bangalore High throughput computational.
MIT Amorphous Materials 9: Glass Strengthening Juejun (JJ) Hu 1.
MIT Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1.
MIT Microstructural Evolution in Materials 6: Substitutional Diffusion Juejun (JJ) Hu
MIT Amorphous Materials 5: Viscosity of Glass Juejun (JJ) Hu 1.
MIT Amorphous Materials 11: Amorphous Silicon Macroelectronics
MIT Microstructural Evolution in Materials 12: Nucleation
Reference: Chp 6 Introduction to Computers by Peter Norton
Rakan Maddah1, Sangyeun2,1 Cho and Rami Melhem1
MIT Microstructural Evolution in Materials 15: Glass Transition
Juejun (JJ) Hu MIT Microstructural Evolution in Materials 10: Faceted and Non-Faceted Growth Juejun (JJ) Hu
“Semiconductor Physics”
Outline Review Material Properties Band gap Absorption Coefficient Mobility.
MIT Amorphous Materials 3: Glass Forming Theories
MIT Microstructural Evolution in Materials 8: Ionic Conductivity
Welcome Welcome Welcome Welcome Welcome Welcome Welcome Welcome
Integrating Carbon Nanotube with Phase Change Memory
Characterizing Multilayer Thin films
Laser Effects on IFE Final Optics
Scalable High Performance Main Memory System Using PCM Technology
Multilevel resistive switching memory based on GO/MoS2/GO stack
MIT Amorphous Materials 2: Classes of Amorphous Materials
MIT Amorphous Materials 11: Amorphous Silicon Macroelectronics
Information Storage and Spintronics 15
The New Information Age
Information Storage and Spintronics 13
MIT Microstructural Evolution in Materials 12: Nucleation
UNIVERSITY OF CHEMICAL TECHNOLOGY AND METALLURGY
Basic Semiconductor Physics
MIT Amorphous Materials 10: Electrical and Transport Properties
MIT Microstructural Evolution in Materials 8: Ionic Conductivity
MIT Microstructural Evolution in Materials 16: Glass Transition
MIT Amorphous Materials 3: Glass Forming Theories
MIT Microstructural Evolution in Materials 13: Precipitate Growth
NaCl CO2 H2O Al Type of Bond Properties Example Ionic Covalent
MIT Amorphous Materials 4: Phase Change Data Storage
MIT Microstructural Evolution in Materials 14: Interface Stability
Research Center for Applied Sciences
A PRESENTATION BY: VIRAT SINGH 7-C
Energy Conversion Devices, Inc.
A review of recent phase change memory developments
Ionic liquid gating of VO2 with a hBN interfacial barrier
Table 3. Main properties of the thin brass electrode
Architecting Phase Change Memory as a Scalable DRAM Alternative
Information Storage and Spintronics 11
Presentation transcript:

MIT Amorphous Materials 4: Phase Change Data Storage Juejun (JJ) Hu 1

Phase change materials Reset Set AmorphousCrystalline High electrical resistivityLow electrical resistivity Low optical reflectance High optical reflectance 2

Key performance metrics Data retention Programming speed Recording density Endurance (cycle lifetime) Power consumption  Good glass stability  Fast crystallization  Size dependence of material properties, driver size  Phase and interface stability  Enthalpy of melting, heat capacity  Low thermal conductivity Trade-off 3

Ge-Sb-Te (GST) phase change alloy GeTe 4 Isostatic compositions SbTe 4 Phys. Rev. B 81, (2010); Solid-State Electron. 111, 27 (2015). Pseudo-binary alloy: (GeTe) x (Sb 2 Te 3 ) y  Main commercial composition  Stressed rigid 3-D network Fast switching compositions  Ge 15 Sb 85, Sb 2 Te High thermal stability alloys  (Ge 2 Sb 1 Te 2 ) x (Ge) y Amorphous: covalent Crystal: resonant bonding 4

Ge-Sb-Te (GST) phase change alloy Phys. Rev. B 81, (2010); Solid-State Electron. 111, 27 (2015). Pseudo-binary alloy: (GeTe) x (Sb 2 Te 3 ) y  Main commercial composition  Stressed rigid 3-D network Fast switching compositions  Ge 15 Sb 85, Sb 2 Te High thermal stability alloys  (Ge 2 Sb 1 Te 2 ) x (Ge) y Sb 2 Te 3 GeTe Te Ge Sb Amorphous: covalent Crystal: resonant bonding 5

T-T-T diagram of GST phase change alloys Emerging Non-Volatile Memories, Springer (2014) 6

Re-writable CDs and DVDs Modulation of optical reflectance via laser- induced phase change 7

Phase change memory (PCM) Discovery of threshold switching in chalcogenides 1968 Ovshinsky 1968 Ovshinsky 256-bit phase change memory demo 1970 Gordon Moore 1970 Gordon Moore Discovery of rapid switching pseudo-binary GST material 1987 Yamada et al Yamada et al. Non-volatile phase change memory module commercialized IBM, Micron, Samsung, … 8

Electrodes used for both programming and read-out Threshold switching: electric field driven bistability  Transient behavior: electronic in nature, no structural change  Contributes to reduced SET voltage S. Hudgens and B. Johnson, MRS Bull. (2004); Phys. Rev. B 78, (2008). Phase change memory (PCM) 9

Where does PCM stand against competitors? 10

Applications beyond data storage: optics Large optical property contrast in GeTe due to change of bonding type from crystalline (resonance) to amorphous (covalent) phase Chem. Rev. 110, (2010). 11

Applications beyond data storage: optics Optical switch Nature 511, 206 (2014); Adv. Mater. 25, 3050 (2013). Electronic paper display ?Applications involving bistable states

Further readings Phase Change Materials: Science and Application, Springer (2009).  Google book link Google book link Emerging Non-Volatile Memories, Springer (2014).  Download link (MIT certificate required) Download link “Phase change materials and phase change memory,” MRS Bull. 39, 703 (2014). 13