Fibrinolytic cross-talk: a new mechanism for plasmin formation

Slides:



Advertisements
Similar presentations
Thrombospondin 1 as a scavenger for matrix-associated fibroblast growth factor 2 by Barbara Margosio, Daniela Marchetti, Veronica Vergani, Raffaella Giavazzi,
Advertisements

An anti-CD19 antibody inhibits the interaction between P-glycoprotein (P-gp) and CD19, causes P-gp to translocate out of lipid rafts, and chemosensitizes.
Volume 14, Issue 4, Pages (October 2008)
IL-18 Downregulates Collagen Production in Human Dermal Fibroblasts via the ERK Pathway  Hee Jung Kim, Seok Bean Song, Jung Min Choi, Kyung Moon Kim,
Arterioscler Thromb Vasc Biol
Arterioscler Thromb Vasc Biol
Activation of factor XI by products of prothrombin activation
Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor.
IFNα-stimulated neutrophils and monocytes release a soluble form of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) displaying apoptotic activity.
MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines by.
Migration inhibitory factor up-regulates vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 via Src, PI3 kinase, and NFκB by M. Asif.
by Kathryn Lagrue, Alex Carisey, David J
Fibrinolytic cross-talk: a new mechanism for plasmin formation
Transglutaminase-mediated oligomerization of the fibrin(ogen) αC domains promotes integrin-dependent cell adhesion and signaling by Alexey M. Belkin, Galina.
Endothelial targeting of a recombinant construct fusing a PECAM-1 single-chain variable antibody fragment (scFv) with prourokinase facilitates prophylactic.
The Small-Molecule Iron Transport Inhibitor Ferristatin/NSC Promotes Degradation of the Transferrin Receptor  Lior Horonchik, Marianne Wessling-Resnick 
Recombinant factor VIIa restores aggregation of αIIbβ3-deficient platelets via tissue factor–independent fibrin generation by Ton Lisman, Jelle Adelmeijer,
Effects of inflammatory cytokines on the release and cleavage of the endothelial cell–derived ultralarge von Willebrand factor multimers under flow by.
Presentation of ovalbumin internalized via the immunoglobulin-A Fc receptor is enhanced through Fc receptor γ-chain signaling by Li Shen, Marjolein van.
Volume 66, Issue 4, Pages (October 2004)
Macrophage-Derived Metalloelastase Is Responsible for the Generation of Angiostatin in Lewis Lung Carcinoma  Zhongyun Dong, Rakesh Kumar, Xiulan Yang,
Plasminogen-mediated matrix invasion and degradation by macrophages is dependent on surface expression of annexin II by Domenick J. Falcone, Wolfgang Borth,
Identification of the receptor scavenging hemopexin-heme complexes
Cleaved high molecular weight kininogen binds directly to the integrin CD11b/CD18 (Mac-1) and blocks adhesion to fibrinogen and ICAM-1 by Nijing Sheng,
Mast cells and neutrophils proteolytically activate chemokine precursor CTAP-III and are subject to counterregulation by PF-4 through inhibition of chymase.
by Zhengyan Wang, Tina M. Leisner, and Leslie V. Parise
Generation of enhanced stability factor VIII variants by replacement of charged residues at the A2 domain interface by Hironao Wakabayashi, Fatbardha Varfaj,
Anan Abu Ubeid, Longmei Zhao, Ying Wang, Basil M. Hantash 
by Abdelbaset Elzagallaai, Sergio D. Rosé, and José-Marı́a Trifaró
by Laurent O. Mosnier, Paula Buijtenhuijs, Pauline F. Marx, Joost C. M
T-cell activation and cytokine production via a bispecific single-chain antibody fragment targeted to blood-stage malaria parasites by Shigeto Yoshida,
Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity by Ju Hyun Cho, Iain P. Fraser, Koichi Fukase, Shoichi.
C7 is expressed on endothelial cells as a trap for the assembling terminal complement complex and may exert anti-inflammatory function by Fleur Bossi,
Lipid raft adhesion receptors and Syk regulate selectin-dependent rolling under flow conditions by Claire Abbal, Martine Lambelet, Debora Bertaggia, Carole.
Vitronectin Concentrates Proteolytic Activity on the Cell Surface and Extracellular Matrix by Trapping Soluble Urokinase Receptor-Urokinase Complexes by.
by Wu-Guo Deng, Ying Zhu, and Kenneth K. Wu
by Matthew F. Whelihan, Vicentios Zachary, Thomas Orfeo, and Kenneth G
Cathepsin-B-dependent apoptosis triggered by antithymocyte globulins: a novel mechanism of T-cell depletion by Marie-Cécile Michallet, Frederic Saltel,
by Lisa J. Jarvis, Jean E. Maguire, and Tucker W. LeBien
Vascular endothelial growth factor stimulates protein kinase CβII expression in chronic lymphocytic leukemia cells by Simon T. Abrams, Benjamin R. B. Brown,
Ifosfamide impairs the allostimulatory capacity of human dendritic cells by intracellular glutathione depletion by Maria C. Kuppner, Anabel Scharner, Valeria.
by A. C. Azim, K. Barkalow, J. Chou, and J. H. Hartwig
Platelets from patients with the Quebec platelet disorder contain and secrete abnormal amounts of urokinase-type plasminogen activator by Walter H. A.
Regulation of plasminogen activation: a role for melanotransferrin (p97) in cell migration by Michel Demeule, Yanick Bertrand, Jonathan Michaud-Levesque,
Volume 62, Issue 3, Pages (September 2002)
Cross-Linking of SPINK6 by Transglutaminases Protects from Epidermal Proteases  Jan Fischer, Yulia Koblyakova, Ties Latendorf, Zhihong Wu, Ulf Meyer-Hoffert 
DNA and factor VII–activating protease protect against the cytotoxicity of histones by Gerben Marsman, Helen von Richthofen, Ingrid Bulder, Florea Lupu,
Expression of inter-α-trypsin inhibitor and tumor necrosis factor-stimulated gene 6 in renal proximal tubular epithelial cells  Ulf Janssen, Gareth Thomas,
Inter-α inhibitor proteins maintain neutrophils in a resting state by regulating shape and reducing ROS production by Soe Soe Htwe, Hidenori Wake, Keyue.
Plasminogen-Dependent Matriptase Activation Accelerates Plasmin Generation by Differentiating Primary Human Keratinocytes  Ya-Wen Chen, Shi Yin, Ying-Jung.
Characterization of Group X Phospholipase A2 as the Major Enzyme Secreted by Human Keratinocytes and its Regulation by the Phorbol Ester TPA  Gérard Lambeau,
Volume 54, Issue 1, Pages (July 1998)
Cell-derived vesicles exposing coagulant tissue factor in saliva
Volume 62, Issue 3, Pages (September 2002)
Volume 11, Issue 3, Pages (March 2003)
A Role for Ran-GTP and Crm1 in Blocking Re-Replication
2-Methyl-3-Hydroxybutyryl-CoA Dehydrogenase Deficiency Is Caused by Mutations in the HADH2 Gene  Rob Ofman, P.N. Jos Ruiter, Marike Feenstra, Marinus.
Matrix metalloproteinase-13 influences ERK signalling in articular rabbit chondrocytes  L.J. Raggatt, Ph.D., S.C. Jefcoat, M.S., I. Choudhury, Ph.D., S.
by Ludovic Durrieu, Alamelu Bharadwaj, and David M. Waisman
IL-18 Downregulates Collagen Production in Human Dermal Fibroblasts via the ERK Pathway  Hee Jung Kim, Seok Bean Song, Jung Min Choi, Kyung Moon Kim,
RhoC Promotes Human Melanoma Invasion in a PI3K/Akt-Dependent Pathway
Ganglioside GQ1b enhances Ig production by human PBMCs
Volume 60, Issue 3, Pages (September 2001)
Regulation by Interleukin-10 and Interleukin-4 of Cyclooxygenase-2 Expression in Human Neutrophils by Hiroaki Niiro, Takeshi Otsuka, Kenji Izuhara, Kunihiro.
Fibrinolytic activity of human mesothelial cells is counteracted by rapid uptake of tissue- type plasminogen activator  Thomas Sitter, Karin Toet, Paul.
Volume 58, Issue 3, Pages (September 2000)
Volume 25, Issue 9, Pages e5 (November 2018)
Cytokine and estrogen stimulation of endothelial cells augments activation of the prekallikrein-high molecular weight kininogen complex: Implications.
Sean P. Cullen, Conor J. Kearney, Danielle M. Clancy, Seamus J. Martin 
IAA inhibits PI3K, MKK4, and MKK7 kinase activities by directly binding in an ATP-competitive manner. IAA inhibits PI3K, MKK4, and MKK7 kinase activities.
Presentation transcript:

Fibrinolytic cross-talk: a new mechanism for plasmin formation by Tiphaine Dejouvencel, Loïc Doeuvre, Romaric Lacroix, Laurent Plawinski, Françoise Dignat-George, H. Roger Lijnen, and Eduardo Anglés-Cano Blood Volume 115(10):2048-2056 March 11, 2010 ©2010 by American Society of Hematology

Identification of activators and cellular activation of plasminogen. Identification of activators and cellular activation of plasminogen. (A) Fibrin autography of platelets, cortical neurons, HMEC-1 cells, and THP-1 cells. The samples were electrophoresed on 8% (wt/vol) polyacrylamide, SDS was then exchanged with 2.5% (wt/vol) Triton X-100, and the gel was overlaid on a fibrin-agarose indicator gel. The picture was taken after 4 hours at 37°C. The position of purified controls (Pn indicates plasmin; tPA, and uPA) is indicated on top. The thin vertical line indicates assembly from the same gel. The thick vertical line separates 2 different gels. (B) THP-1 cells (105 cells/well) were incubated with various concentrations of plasminogen (0-3μM) and 0.75mM CBS0065. Kinetics of plasmin formation (mOD/minute) was followed by measuring the release of p-nitroaniline. Data were fitted according to the Michaelis-Menten equation (Km = 492nM). Tiphaine Dejouvencel et al. Blood 2010;115:2048-2056 ©2010 by American Society of Hematology

Cellular activation of plasminogen: effect of LBS ligands. Cellular activation of plasminogen: effect of LBS ligands. (A) Cortical neurons (105 cells/well) and (B) THP-1 cells (105/well) were incubated with 125nM Glu-plasminogen supplemented with various concentrations of ϵ-ACA (0-25mM) and 0.75mM CBS0065. Plasmin formation (●) was detected by measuring the release of p-nitroaniline. (C) THP-1 cells (105/well) were incubated with 125nM Glu-plasminogen supplemented with of 0 to 1μM anti–K1-LBS mAb 34D3 and 0.75mM CBS0065. (A-C) After detection of plasmin formation, the cells were washed twice with PBS and incubated with 0.75mM CBS0065 to detect cell-associated plasmin (□). Results are expressed as a percentage (mean ± SD; n = 3) of plasmin formation or of cell-associated plasmin activity in the absence of ϵ-ACA or mAb. Tiphaine Dejouvencel et al. Blood 2010;115:2048-2056 ©2010 by American Society of Hematology

Effect of ϵ-ACA and carboxipeptidase B on Lys- and Glu-plasminogen activation by cellular uPA. Effect of ϵ-ACA and carboxipeptidase B on Lys- and Glu-plasminogen activation by cellular uPA. THP-1 cells (105/well) were incubated with 500nM Lys- () or Glu-plasminogen (□) in medium alone or supplemented with ϵ-ACA (5 or 25mM) and 0.75mM CBS0065. Carboxypeptidase B, CpB (50 μg/mL), pretreated THP-1 cells were incubated with plasminogen and CBS0065. Rate of plasmin formation (A) and amount of cell-associated plasmin (B) were detected as indicated in Figure 2. Bars represent the amount of plasmin formed or associated to the cells (mOD/minute) versus the concentration of ϵ-ACA or after CpB treatment (mean ± SEM; n = 3). Significant changes compared with Lys-Pg (*P < .05)/Glu-Pg (§P < .05) alone. Tiphaine Dejouvencel et al. Blood 2010;115:2048-2056 ©2010 by American Society of Hematology

Fibrinolytic cross-talk: activation of fibrin- and fibronectin-bound plasminogen by cellular MPs. (A) Native or recombinant active site–inactivated Glu-plasminogen (Glu-Pg, r-Pg-Ala741) at 1μM was bound to fibrin-coated beads for 1 hour at 37°C. Fibrinolytic cross-talk: activation of fibrin- and fibronectin-bound plasminogen by cellular MPs. (A) Native or recombinant active site–inactivated Glu-plasminogen (Glu-Pg, r-Pg-Ala741) at 1μM was bound to fibrin-coated beads for 1 hour at 37°C. Fibrin-coated beads with bound plasminogen were then incubated with 106 EMPs in a final volume of 200 μL. After overnight incubation at 22°C, the fibrin-coated beads were sedimented by centrifugation and resuspended in 10mM Tris-HCl, pH 6.8, containing 10% SDS to elute fibrin-bound plasminogen derivatives. The supernatant was electrophoresed under nonreducing conditions, proteins were transferred to PVDF membranes and revealed with a horseradish peroxidase–conjugated mAb (150 ng/mL) directed against plasminogen K1. The Western blot shows Glu-plasmin formation by EMPs. Purified plasmin is shown as reference. (B-C) Glu-plasminogen (1μM) was bound to fibrin (B) or fibronectin (C) surfaces. After 3 washes with PBS, EMPs were added at various concentrations. (D) Glu-plasminogen (1μM) was bound to fibrin surfaces (main graph) or to fibrin-coated beads (inset). THP-1 cells were then added to fibrin surfaces at various concentrations (main graph) and 2.5 × 105 fibrin-coated beads were incubated with 105 adherent monocytes or neurons (inset). The formation of plasmin was detected by measuring the release of p-nitroaniline from the chromogenic substrate CBS0065 added at 0.75mM. Bars represent the amount of plasmin formed (mOD/minute; mean ± SEM; n = 3) by THP-1 cells on fibrin (B,D) and fibronectin (C), and by adherent monocytes or neurons on fibrin-coated beads (D inset). Amil indicates amiloride; IgG, antibody against uPA and its nonimmune IgG control. *Significant changes compared with activation without THP-1 (A) or EMPs (B-C) or activation on neurons (P < .05); §changes with inhibitors compared with activation at 5 × 105 EMPs (P < .05). Tiphaine Dejouvencel et al. Blood 2010;115:2048-2056 ©2010 by American Society of Hematology

Proteolytic cross-talk: activation of platelet-bound plasminogen by cells bearing uPA (monocytes) or tPA (neurons). Proteolytic cross-talk: activation of platelet-bound plasminogen by cells bearing uPA (monocytes) or tPA (neurons). Glu-plasminogen (2μM) was bound to platelets as indicated in “Activation of platelet-bound plasminogen by monocytes or neurons.” (A) After treatment with 50 μg/mL CpB, monocytes (●) or neurons (■) were incubated with plasminogen-bearing platelets at various concentrations (0-1.5 106/well) in the presence of 0.75mM CBS0065. The formation of plasmin (mOD/minute) was detected by measuring the release of p-nitroaniline. (Inset) Detection of plasmin formation on platelets (1.8 × 106) in the absence of cells or incubated with monocytes or neurons (105 cells). Results are expressed as the rate of plasmin formation (mean ± SEM; n = 3). (B) After treatment with 50 μg/mL CpB, EMPs were incubated with 5 × 106 platelets bearing plasminogen or with 3nM plasminogen (concentration equivalent to that bound to platelets), or with buffer in the presence of 0.75mM CBS0065. The formation of plasmin (mOD/minute) was detected by measuring the release of p-nitroaniline. Results are expressed as rate of plasmin formation (n = 3). A representative experiment is shown. Tiphaine Dejouvencel et al. Blood 2010;115:2048-2056 ©2010 by American Society of Hematology

Efficiency and specificity of the plasminogen cross-talk. Efficiency and specificity of the plasminogen cross-talk. Glu-plasminogen (2μM) was bound to platelets as indicated in “Activation of platelet-bound plasminogen by monocytes or neurons.” (A) After treatment with 50 μg/mL CpB, adherent monocytes were incubated with 5 × 106 platelets bearing plasminogen (cross-talk) or with plasminogen (concentration equivalent to plasminogen bound to platelets; same surface) in the presence of 0.75mM CBS0065. In a parallel experiment, uPA (concentration equivalent to uPA bound to monocytes) was incubated with 5 × 106 platelets bearing plasminogen (free uPA) in the presence of 0.75mM CBS0065. Results are expressed as the rate of plasmin formation (mean ± SEM; n = 3; triplicates). NS indicates nonsignificant (P = .078), *P < .005, #P < .014. (B) Monocytes were incubated with 1nM of native uPA and various concentrations of a nonactive mutant uPA (r-scuPA-Gly159). Monocytes were then incubated with 5 × 106 platelets bearing plasminogen, in the presence of 0.75mM CBS0065. The formation of plasmin (mOD/minute) was detected by measuring the release of p-nitroaniline (mean ± SEM; n = 2; triplicates). A representative experiment is shown (P = .023; 0 vs 5nM r-scuPA-Gly159). Tiphaine Dejouvencel et al. Blood 2010;115:2048-2056 ©2010 by American Society of Hematology

Model of fibrinolytic and proteolytic cross-talk. Model of fibrinolytic and proteolytic cross-talk. In inflammatory processes of the vascular wall, activation of coagulation leads to fibrin deposits. Within this setting and according to data presented here, the fibrinolytic cross-talk mechanism could be an intermediary pathway for fibrinolysis and pericellular proteolysis. Fibrinolytic effects (top): plasminogen (Pg) bound to fibrin or to platelets could be activated by either monocyte- or MP-borne uPA (EMP or monocyte-derived microparticle [MoMP]). In ECM remodeling in the vascular wall (bottom), plasminogen bound to matrix components could be activated by MP-borne uPA (EMP or MoMP) or by macrophage-borne uPA. Tiphaine Dejouvencel et al. Blood 2010;115:2048-2056 ©2010 by American Society of Hematology