Gene Translation:RNA -> Protein How does a particular sequence of nucleotides specify a particular sequence of amino acids?nucleotidesamino acids The answer:

Slides:



Advertisements
Similar presentations
Traducción. Molécula de aminoácido Sitio de fijación del aminoácido Adaptador (RNAt) RNAm Triplete nucleotídico que codifica un aminoácido + -O 2 C—C—NH.
Advertisements

Translation By Josh Morris.
Transcription & Translation Worksheet
DNA TRANSCRIPTION and TRANSLATION
Transcription and Translation
Transcription and Translation
Proteins are made by decoding the Information in DNA Proteins are not built directly from DNA.
FEATURES OF GENETIC CODE AND NON SENSE CODONS
Chapter 17: From Gene to Protein.
How Proteins are Produced
DNA.
Sec 5.1 / 5.2. One Gene – One Polypeptide Hypothesis early 20 th century – Archibald Garrod physician that noticed that some metabolic errors were found.
DNA The Secret of Life. Deoxyribonucleic Acid DNA is the molecule responsible for controlling the activities of the cell It is the hereditary molecule.
1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Human Biology Sylvia S. Mader Michael Windelspecht Chapter.
GENE EXPRESSION. Gene Expression Our phenotype is the result of the expression of proteins Different alleles encode for slightly different proteins Protein.
RNA Structure Like DNA, RNA is a nucleic acid. RNA is a nucleic acid made up of repeating nucleotides.
7. Protein Synthesis and the Genetic Code a). Overview of translation i). Requirements for protein synthesis ii). messenger RNA iii). Ribosomes and polysomes.
Chapter 11 DNA and Genes.
Cell Division and Gene Expression
Chapter 14 Genetic Code and Transcription. You Must Know The differences between replication (from chapter 13), transcription and translation and the.
Chapter 17 From Gene to Protein. Protein Synthesis  The information content of DNA  Is in the form of specific sequences of nucleotides along the DNA.
©1998 Timothy G. Standish From DNA To RNA To Protein Timothy G. Standish, Ph. D.
Parts is parts…. AMINO ACID building block of proteins contain an amino or NH 2 group and a carboxyl (acid) or COOH group PEPTIDE BOND covalent bond link.
Today 14.2 & 14.4 Transcription and Translation /student_view0/chapter3/animation__p rotein_synthesis__quiz_3_.html.
G U A C G U A C C A U G G U A C A C U G UUU UUC UUA UCU UUG UCC UCA
Protein Synthesis Translation e.com/watch?v=_ Q2Ba2cFAew (central dogma song) e.com/watch?v=_ Q2Ba2cFAew.
Chapter 17 Membrane Structure and Function From Gene to Proteins.
Figure 17.4 DNA molecule Gene 1 Gene 2 Gene 3 DNA strand (template) TRANSCRIPTION mRNA Protein TRANSLATION Amino acid ACC AAACCGAG T UGG U UU G GC UC.
How Genes Work: From DNA to RNA to Protein Chapter 17.
F. PROTEIN SYNTHESIS [or translating the message]
DNA.
Nucleic Acids: DNA and RNA
From DNA to Protein.
Translation PROTEIN SYNTHESIS.
Whole process Step by step- from chromosomes to proteins.
Please turn in your homework
The blueprint of life; from DNA to Protein
Where is Cytochrome C? What is the role? Where does it come from?
BIOLOGY 12 Protein Synthesis.
A Zero-Knowledge Based Introduction to Biology
Transcription and Translation
What is Transcription and who is involved?
From Gene to Phenotype- part 2
Chemistry 121 Winter 17 Introduction to Organic Chemistry and Biochemistry Instructor Dr. Upali Siriwardane (Ph.D. Ohio State)
Ch. 17 From Gene to Protein Thought Questions
Gene Expression: From Gene to Protein
Gene Expression: From Gene to Protein
Gene Expression: From Gene to Protein
From Gene to Protein The information content of DNA is in the form of specific sequences of nucleotides The DNA inherited by an organism leads to specific.
Overview: The Flow of Genetic Information
Section Objectives Relate the concept of the gene to the sequence of nucleotides in DNA. Sequence the steps involved in protein synthesis.
Protein Synthesis Translation.
Overview: The Flow of Genetic Information
DNA The Secret of Life.
Chapter 17 From Gene to Protein.
Transcription You’re made of meat, which is made of protein.
Gene Expression: From Gene to Protein
Chapter 17 From Gene to Protein.
Protein Synthesis The information of DNA is in the form of specific sequences of nucleotides along the DNA strands The DNA inherited by an organism leads.
SC-100 Class 25 Molecular Genetics
Warm Up 3 2/5 Can DNA leave the nucleus?
Protein Structure Timothy G. Standish, Ph. D..
Today’s notes from the student table Something to write with
Transcription and Translation
Central Dogma and the Genetic Code
Bellringer Please answer on your bellringer sheet:
DNA, RNA, Amino Acids, Proteins, and Genes!.
Chapter 17: From Gene to Protein
12.2 Replication of DNA DNA replication is the process of copying a DNA molecule. Semiconservative replication - each strand of the original double helix.
Chapter 17: From Gene to Protein
Presentation transcript:

Gene Translation:RNA -> Protein How does a particular sequence of nucleotides specify a particular sequence of amino acids?nucleotidesamino acids The answer: by means of transfer RNA molecules, each specific for one amino acid and for a particular triplet of nucleotides in messenger RNA (mRNA) called a codon. The family of tRNA molecules enables the codons in a mRNA molecule to be translated into the sequence of amino acids in the protein. At least one kind of tRNA is present for each of the 20 amino acids used in protein synthesis. (Some amino acids employ the services of two or three different tRNAs, so most cells contain as many as 32 different kinds of tRNA.) The amino acid is attached to the appropriate tRNA by an activating enzyme (one of 20 aminoacyl- tRNA synthetases) specific for that amino acid as well as for the tRNA assigned to it.messenger RNA Each kind of tRNA has a sequence of 3 unpaired nucleotides — the anticodon — which can bind, following the rules of base pairing, to the complementary triplet of nucleotides — the codon — in a messenger RNA (mRNA) molecule. Just as DNA replication and transcription involve base pairing of nucleotides running in opposite direction, so the reading of codons in mRNA (5' -> 3') requires that the anticodons bind in the opposite direction.base pairing Anticodon: 3' CGA 5' Codon: 5' GCU 3' The RNA Codons Second nucleotide U C A G U UUU Phenylalanine (Phe) UCU Serine (Ser) UAU Tyrosine (Tyr) UGU Cysteine (Cys) U UUC Phe UCC Ser UAC Tyr UGC Cys C UUA Leucine (Leu) UCA Ser UAA STOP UGA STOP A UUG Leu UCG Ser UAG STOP UGG Tryptophan (Trp) G C

CUU Leucine (Leu) CCU Proline (Pro) CAU Histidine (His) CGU Arginine (Arg) U CUC Leu CCC Pro CAC His CGC Arg C CUA Leu CCA Pro CAA Glutamine (Gln) CGA Arg A CUG Leu CCG Pro CAG Gln CGG Arg G A AUU Isoleucine (Ile) ACU Threonine (Thr) AAU Asparagine (Asn) AGU Serine (Ser) U AUC Ile ACC Thr AAC Asn AGC Ser C AUA Ile ACA Thr AAA Lysine (Lys) AGA Arginine (Arg)

A AUG Methionine (Met) or START ACG Thr AAG Lys AGG Arg G GUU Valine Val GCU Alanine (Ala) GAU Aspartic acid (Asp) GGU Glycine (Gly) U GUC (Val) GCC Ala GAC Asp GGC Gly C GUA Val GCA Ala GAA Glutamic acid (Glu) GGA Gly A GUG Val GCG Ala GAG Glu GGG Gly G Note: Most of the amino acids are encoded by synonymous codons that differ in the third position of the codon. In some cases, a single tRNA can recognize two or more of these synonymous codons. Example: phenylalanine tRNA with the anticodon 3' AAG 5' recognizes not only UUC but also UUU. The violation of the usual rules of base pairing at the third nucleotide of a codon is called "wobble" The codon AUG serves two related functions – It begins every message; that is, it signals the start of translation placing the amino acid methionine at the amino terminal of the polypeptide to be synthesized.amino terminal – When it occurs within a message, it guides the incorporation of methionine. Three codons, UAA, UAG, and UGA, act as signals to terminate translation. They are called STOP codons. The Steps of Translation

1. Initiation The small subunit of the ribosome binds to a site "upstream" (on the 5' side) of the start of the message.ribosome It proceeds downstream (5' -> 3') until it encounters the start codon AUG. (The region between the mRNA cap and the AUG is known as the 5'-untranslated region [5'-UTR].)mRNA cap Here it is joined by the large subunit and a special initiator tRNA. The initiator tRNA binds to the P site (shown in pink) on the ribosome. In eukaryotes, initiator tRNA carries methionine (Met). (Bacteria use a modified methionine designated fMet.)eukaryotesmethionine 2. Elongation An aminoacyl-tRNA (a tRNA covalently bound to its amino acid) able to base pair with the next codon on the mRNA arrives at the A site (green) associated with: – an elongation factor (called EF-Tu in bacteria; EF-1 in eukaryotes) – GTP (the source of the needed energy) The preceding amino acid (Met at the start of translation) is covalently linked to the incoming amino acid with a peptide bond (shown in red).peptide bond The initiator tRNA is released from the P site. The ribosome moves one codon downstream. This shifts the more recently-arrived tRNA, with its attached peptide, to the P site and opens the A site for the arrival of a new aminoacyl-tRNA. This last step is promoted by another protein elongation factor (called EF-G in bacteria; EF-2 in eukaryotes) and the energy of another molecule of GTP. Note: the initiator tRNA is the only member of the tRNA family that can bind directly to the P site. The P site is so-named because, with the exception of initiator tRNA, it binds only to a peptidyl-tRNA molecule; that is, a tRNA with the growing peptide attached. The A site is so-named because it binds only to the incoming aminoacyl-tRNA; that is the tRNA bringing the next amino acid. So, for example, the tRNA that brings Met into the interior of the polypeptide can bind only to the A site. 3. Termination The end of translation occurs when the ribosome reaches one or more STOP codons (UAA, UAG, UGA). (The nucleotides from this point to the poly(A) tail make up the 3'-untranslated region [3'-UTR] of the mRNA.)poly(A) tail There are no tRNA molecules with anticodons for STOP codons. However, protein release factors recognize these codons when they arrive at the A site. Binding of these proteins —along with a molecule of GTP — releases the polypeptide from the ribosome. The ribosome splits into its subunits, which can later be reassembled for another round of protein synthesis.