大數據行銷研究 Big Data Marketing Research

Slides:



Advertisements
Similar presentations
Social Media Marketing Research 社會媒體行銷研究 SMMR08 TMIXM1A Thu 7,8 (14:10-16:00) L511 Exploratory Factor Analysis Min-Yuh Day 戴敏育 Assistant Professor.
Advertisements

Case Study for Information Management 資訊管理個案
Social Media Marketing Analytics 社群網路行銷分析 SMMA02 TLMXJ1A (MIS EMBA) Fri 12,13,14 (19:20-22:10) D326 社群網路行銷分析 (Social Media Marketing Analytics) Min-Yuh.
FGU LDT. FGU EIS 96 ‧ 8 ‧ 25 FGU LDT 佛光大學學習與數位科技學系.
統計學 ( 二 ) 朝陽科技大學工業工程與管理系副教授洪弘祈 Statistics II2 企業與統計之關係 n 品質管制 n 預測統計與市場調查 n 績效與人事管理 n 例行報告之方案評估與決策參考 n 製程改善 n 研發能力之提昇 n 產品可靠度 n 生產管制.
Case Study for Information Management 資訊管理個案
Social Media Marketing Research 社會媒體行銷研究 SMMR01 TMIXM1A Thu 7,8 (14:10-16:00) U505 Course Orientation for Social Media Marketing Research Min-Yuh.
Business Intelligence 商業智慧 BI01 IM EMBA Fri 12,13,14 (19:20-22:10) D502 Introduction to Business Intelligence 商業智慧導論 Min-Yuh Day 戴敏育 Assistant Professor.
Social Media Marketing Research 社會媒體行銷研究 SMMR06 TMIXM1A Thu 7,8 (14:10-16:00) L511 Measuring the Construct Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
社會媒體服務專題 Special Topics in Social Media Services 淡江大學 淡江大學 資訊管理學系 資訊管理學系 Dept. of Information ManagementDept. of Information Management, Tamkang UniversityTamkang.
Social Media Marketing 社群網路行銷 SMM09 TLMXJ1A (MIS EMBA) Mon 12,13,14 (19:20-22:10) D504 行動 APP 行銷 (Mobile Apps Marketing) Min-Yuh Day 戴敏育 Assistant.
Web Mining ( 網路探勘 ) WM12 TLMXM1A Wed 8,9 (15:10-17:00) U705 Web Usage Mining ( 網路使用挖掘 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information.
Social Media Marketing Management 社會媒體行銷管理 SMMM06 TLMXJ1A Tue 12,13,14 (19:20-22:10) D325 行銷理論 (Marketing Theories) Min-Yuh Day 戴敏育 Assistant Professor.
Business Intelligence Trends 商業智慧趨勢 BIT08 MIS MBA Mon 6, 7 (13:10-15:00) Q407 商業智慧導入與趨勢 (Business Intelligence Implementation and Trends) Min-Yuh.
PLS-SEM: Introduction and Overview
Social Media Management 社會媒體管理 SMM06 TMIXM1A Fri. 7,8 (14:10-16:00) L215 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Social Media Management 社會媒體管理 SMM01 TMIXM1A Fri. 7,8 (14:10-16:00) L215 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Social Media Marketing Management 社會媒體行銷管理
Social Media Marketing 社群網路行銷 SMM05 TLMXJ1A (MIS EMBA) Mon 12,13,14 (19:20-22:10) D504 社群網路行銷蜻蜓效應 (The Dragonfly Effect of Social Media Marketing)
Case Study for Information Management 資訊管理個案 CSIM4B07 TLMXB4B (M1824) Tue 2, 3, 4 (9:10-12:00) B502 Telecommunications, the Internet, and Wireless.
Social Media Marketing 社群網路行銷 SMM08 TLMXJ1A (MIS EMBA) Mon 12,13,14 (19:20-22:10) D504 社群網路行銷計劃 (Social Media Marketing Plan) Min-Yuh Day 戴敏育 Assistant.
Special Topics in Social Media Services 社會媒體服務專題 1 992SMS07 TMIXJ1A Sat. 6,7,8 (13:10-16:00) D502 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information.
Data Mining 資料探勘 Introduction to Data Mining 資料探勘導論 Min-Yuh Day 戴敏育
Social Media Marketing Management 社會媒體行銷管理 SMMM07 TLMXJ1A Tue 12,13,14 (19:20-22:10) D325 社群網路行為研究 (Behavior Research on Social Media) Min-Yuh Day.
商業智慧實務 Practices of Business Intelligence BI01 MI4 Wed, 9,10 (16:10-18:00) (B113) 商業智慧導論 (Introduction to Business Intelligence) Min-Yuh Day 戴敏育.
Social Media Marketing Management 社會媒體行銷管理 SMMM12 TLMXJ1A Tue 12,13,14 (19:20-22:10) D325 確認性因素分析 (Confirmatory Factor Analysis) Min-Yuh Day 戴敏育.
Social Media Marketing Analytics 社群網路行銷分析 SMMA04 TLMXJ1A (MIS EMBA) Fri 12,13,14 (19:20-22:10) D326 測量構念 (Measuring the Construct) Min-Yuh Day 戴敏育.
Case Study for Information Management 資訊管理個案 CSIM4C02 TLMXB4C (M1824) Tue 2, 3, 4 (9:10-12:00) B425 Information Systems in Global Business: UPS (Chap.
商業智慧實務 Practices of Business Intelligence BI06 MI4 Wed, 9,10 (16:10-18:00) (B130) 資料科學與巨量資料分析 (Data Science and Big Data Analytics) Min-Yuh Day 戴敏育.
Social Media Marketing Research 社會媒體行銷研究 SMMR09 TMIXM1A Thu 7,8 (14:10-16:00) L511 Confirmatory Factor Analysis Min-Yuh Day 戴敏育 Assistant Professor.
Data Mining 資料探勘 DM04 MI4 Thu 9, 10 (16:10-18:00) B216 分群分析 (Cluster Analysis) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Case Study for Information Management 資訊管理個案 CSIM4B08 TLMXB4B Thu 8, 9, 10 (15:10-18:00) B508 Securing Information System: 1. Facebook, 2. European.
Case Study for Information Management 資訊管理個案 CSIM4B03 TLMXB4B (M1824) Tue 3,4 (10:10-12:00) L212 Thu 9 (16:10-17:00) B601 Global E-Business and Collaboration:
Case Study for Information Management 資訊管理個案
商業智慧實務 Practices of Business Intelligence BI01 MI4 Wed, 9,10 (16:10-18:00) (B130) 商業智慧導論 (Introduction to Business Intelligence) Min-Yuh Day 戴敏育.
Social Media Marketing Management 社會媒體行銷管理
Social Media Marketing 社群網路行銷 SMM02 TLMXJ1A (MIS EMBA) Mon 12,13,14 (19:20-22:10) D504 社群網路商業模式 (Business Models of Social Media) Min-Yuh Day 戴敏育.
Data Mining 資料探勘 DM04 MI4 Wed, 6,7 (13:10-15:00) (B216) 分群分析 (Cluster Analysis) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Social Media Marketing Management 社會媒體行銷管理 SMMM01 TLMXJ1A Tue 12,13,14 (19:20-22:10) D325 Course Orientation of Social Media Marketing Management.
Web Mining ( 網路探勘 ) WM06 TLMXM1A Wed 8,9 (15:10-17:00) U705 Information Retrieval and Web Search ( 資訊檢索與網路搜尋 ) Min-Yuh Day 戴敏育 Assistant Professor.
Social Media Marketing Research 社會媒體行銷研究 SMMR04 TMIXM1A Thu 7,8 (14:10-16:00) L511 Marketing Research Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
Social Media Marketing Analytics 社群網路行銷分析 SMMA06 TLMXJ1A (MIS EMBA) Fri 12,13,14 (19:20-22:10) D326 探索性因素分析 (Exploratory Factor Analysis) Min-Yuh.
Data Mining 資料探勘 DM01 MI4 Wed, 6,7 (13:10-15:00) (B216) Introduction to Data Mining ( 資料探勘導論 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of.
ACCEPTANCE OF BLOG USAGE: THE ROLES OF TECHNOLOGY ACCEPTANCE, SOCIAL INFLUENCE AND KNOWLEDGE SHARING MOTIVATION INFORMATION & MANAGEMENT 45 (2008) CHIN-LUNG.
Introduction to structural equation modeling
Data Mining 資料探勘 Introduction to Data Mining (資料探勘導論) Min-Yuh Day 戴敏育
Case Study for Information Management 資訊管理個案
Big Data Mining 巨量資料探勘 DM01 MI4 (M2244) (3094) Tue, 3, 4 (10:10-12:00) (B216) Course Orientation for Big Data Mining ( 巨量資料探勘課程介紹 ) Min-Yuh Day 戴敏育.
Social Computing and Big Data Analytics 社群運算與大數據分析
Social Computing and Big Data Analytics 社群運算與大數據分析
社群網路行銷管理 Social Media Marketing Management SMMM02 MIS EMBA (M2200) (8615) Thu, 12,13,14 (19:20-22:10) (D309) 社群網路商業模式 (Business Models of Social.
Social Computing and Big Data Analytics 社群運算與大數據分析 SCBDA05 MIS MBA (M2226) (8628) Wed, 8,9, (15:10-17:00) (B309) Big Data Analytics with Numpy in.
社群網路行銷管理 Social Media Marketing Management SMMM03 MIS EMBA (M2200) (8615) Thu, 12,13,14 (19:20-22:10) (D309) 顧客價值與品牌 (Customer Value and Branding)
Social Computing and Big Data Analytics 社群運算與大數據分析
Social Computing and Big Data Analytics 社群運算與大數據分析
Big Data Mining 巨量資料探勘 DM05 MI4 (M2244) (3094) Tue, 3, 4 (10:10-12:00) (B216) 分群分析 (Cluster Analysis) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
大數據行銷研究 Big Data Marketing Research
資訊管理專題 Hot Issues of Information Management
Social Computing and Big Data Analytics 社群運算與大數據分析
大數據行銷研究 Big Data Marketing Research
Case Study for Information Management 資訊管理個案
分群分析 (Cluster Analysis)
大數據行銷研究 Big Data Marketing Research
IS6000 – Class 10 Introduction to SmartPLS (&SPSS)
PLS-SEM: Introduction and Overview
商業智慧實務 Practices of Business Intelligence
Case Study for Information Management 資訊管理個案
Case Study for Information Management 資訊管理個案
Case Study for Information Management 資訊管理個案
Case Study for Information Management 資訊管理個案
Presentation transcript:

大數據行銷研究 Big Data Marketing Research Tamkang University 確認性因素分析 (Confirmatory Factor Analysis) 1051BDMR07 MIS EMBA (M2262) (8638) Thu, 12,13,14 (19:20-22:10) (D409) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University 淡江大學 資訊管理學系 http://mail. tku.edu.tw/myday/ 2016-11-11

課程大綱 (Syllabus) 週次 (Week) 日期 (Date) 內容 (Subject/Topics) 1 2016/09/16 中秋節 (調整放假一天) (Mid-Autumn Festival Holiday)(Day off) 2 2016/09/23 大數據行銷研究課程介紹 (Course Orientation for Big Data Marketing Research) 3 2016/09/30 資料科學與大數據行銷 (Data Science and Big Data Marketing) 4 2016/10/07 大數據行銷分析與研究 (Big Data Marketing Analytics and Research) 5 2016/10/14 測量構念 (Measuring the Construct) 6 2016/10/21 測量與量表 (Measurement and Scaling)

課程大綱 (Syllabus) 週次 (Week) 日期 (Date) 內容 (Subject/Topics) 7 2016/10/28 大數據行銷個案分析 I (Case Study on Big Data Marketing I) 8 2016/11/04 探索性因素分析 (Exploratory Factor Analysis) 9 2016/11/11 確認性因素分析 (Confirmatory Factor Analysis) 10 2016/11/18 期中報告 (Midterm Presentation) 11 2016/11/25 社群運算與大數據分析 (Social Computing and Big Data Analytics) 12 2016/12/02 社會網路分析 (Social Network Analysis)

課程大綱 (Syllabus) 週次 (Week) 日期 (Date) 內容 (Subject/Topics) 13 2016/12/09 大數據行銷個案分析 II (Case Study on Big Data Marketing II) 14 2016/12/16 社會網絡分析量測與實務 (Measurements and Practices of Social Network Analysis) 15 2016/12/23 大數據情感分析 (Big Data Sentiment Analysis) 16 2016/12/30 金融科技行銷研究 (FinTech Marketing Research) 17 2017/01/06 期末報告 I (Term Project Presentation I) 18 2017/01/13 期末報告 II (Term Project Presentation II)

Joseph F. Hair, G. Tomas M. Hult, Christian M Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE, 2013 Source: http://www.amazon.com/Partial-Squares-Structural-Equation-Modeling/dp/1452217440/

蕭文龍 (2016), 統計分析入門與應用:SPSS中文版+SmartPLS 3(PLS_SEM), 碁峰資訊 http://24h.pchome.com.tw/books/prod/DJAV0S-A9006UWCI

Second generation Data Analysis Techniques Confirmatory Factor Analysis (CFA) Structural Equation Modeling (SEM) Partial-least-squares-based SEM (PLS-SEM) Covariance-based SEM (CB-SEM) PLS PLS-Graph Smart-PLS LISREL EQS AMOS Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Types of Factor Analysis Exploratory Factor Analysis (EFA) is used to discover the factor structure of a construct and examine its reliability. It is data driven. Confirmatory Factor Analysis (CFA) is used to confirm the fit of the hypothesized factor structure to the observed (sample) data. It is theory driven. Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Structural Equation Modeling (SEM) Structural Equation Modeling (SEM) techniques such as LISREL and Partial Least Squares (PLS) are second generation data analysis techniques Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Data Analysis Techniques Second generation data analysis techniques SEM PLS, LISREL statistical conclusion validity First generation statistical tools Regression models: linear regression, LOGIT, ANOVA, and MANOVA Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

SEM models in the IT literature Partial-least-squares-based SEM (PLS-SEM) PLS, PLS-Graph, Smart-PLS Covariance-based SEM (CB-SEM) LISREL, EQS, AMOS Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

The TAM Model Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Structured Equation Modeling (SEM) Structural model the assumed causation among a set of dependent and independent constructs Measurement model loadings of observed items (measurements) on their expected latent variables (constructs). Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Structured Equation Modeling (SEM) The combined analysis of the measurement and the structural model enables: measurement errors of the observed variables to be analyzed as an integral part of the model factor analysis to be combined in one operation with the hypotheses testing SEM factor analysis and hypotheses are tested in the same analysis Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Structure Model

Structured Equation Modeling (SEM) Path Model (Causal Model) X Y Satisfaction Loyalty Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Structured Equation Modeling (SEM) Path Model and Constructs Reputation Satisfaction Loyalty Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Mediating Effect (Mediator) Satisfaction Reputation Loyalty Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Continuous Moderating Effect (Moderator) Income Reputation Loyalty Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Categorical Moderation Effect (Moderator) Reputation Loyalty Females Significant Difference? Reputation Loyalty Males Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Hierarchical Component Model First Order Construct vs. Second Order Construct First (Lower) Order Components Second (Higher) Order Components Price Service Quality Satisfaction Personnel Service-scape Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Measurement Model

Measuring Loyalty 5 Variables (Items) (5:1) (Zeithaml, Berry & Parasuraman, 1996) Say positive things about XYZ to other people. Loyalty Recommend XYZ to someone who seeks your advice. Encourage friends and relatives to do business with XYZ. Loyalty 1. Say positive things about XYZ to other people. 2. Recommend XYZ to someone who seeks your advice. 3. Encourage friends and relatives to do business with XYZ. 4. Consider XYZ your first choice to buy services. 5. Do more business with XYZ in the next few years. Source: Valarie A. Zeithaml, Leonard L. Berry and A. Parasuraman, “The Behavioral Consequences of Service Quality,” Journal of Marketing, Vol. 60, No. 2 (Apr., 1996), pp. 31-46 Consider XYZ your first choice to buy services. Do more business with XYZ in the next few years. Source: Valarie A. Zeithaml, Leonard L. Berry and A. Parasuraman, “The Behavioral Consequences of Service Quality,” Journal of Marketing, Vol. 60, No. 2 (Apr., 1996), pp. 31-46

Measurement Model Loyalty 1. Say positive things about XYZ to other people. 2. Recommend XYZ to someone who seeks your advice. 3. Encourage friends and relatives to do business with XYZ. 4. Consider XYZ your first choice to buy services. 5. Do more business with XYZ in the next few years. Source: Valarie A. Zeithaml, Leonard L. Berry and A. Parasuraman, “The Behavioral Consequences of Service Quality,” Journal of Marketing, Vol. 60, No. 2 (Apr., 1996), pp. 31-46 Loy_4 Loy_5 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Example of a Path Model With Three Constructs CSOR = Corporate Social Responsibility ATTR = Attractiveness COMP = Competence csor_1 csor_2 CSOR csor_3 csor_4 comp_1 COMP csor_5 comp_2 comp_3 attr_1 ATTR attr_2 attr_3 Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Difference Between Reflective and Formative Measures Construct domain Construct domain Reflective Measurement Model Formative Measurement Model Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Satisfaction as a Reflective Construct I appreciate this hotel SAT I am looking forward to staying in this hotel I recommend this hotel to others Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Satisfaction as a Formative Construct The service is good SAT The personnel is friendly The rooms are clean Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Satisfaction as a Reflective and Formative Construct Reflective Measurement Model Formative Measurement Model I appreciate this hotel The service is good SAT SAT I am looking forward to staying in this hotel The personnel is friendly I recommend this hotel to others The rooms are clean Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Reflective Construct ? Formative Construct ? 1 Causal priority between the indicator and the construct From the construct to the indicators: reflective From the indicators to the construct: formative Diamantopoulos and Winklhofer (2001) Reflective Measurement Model Formative Measurement Model Indicator 1 Indicator 1 Construct Construct Indicator 2 Indicator 2 Indicator 3 Indicator 3 Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Reflective Construct ? Formative Construct ? 2 Is the construct a trait explaining the indicators or rather a combination of the indicator? If trait: reflective If combination: formative Fornell and Bookstein (1982) Reflective Measurement Model Formative Measurement Model Indicator 1 Indicator 1 Construct Construct Indicator 2 Indicator 2 Indicator 3 Indicator 3 Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Reflective Construct ? Formative Construct ? 3 Do the indicators represent consequences or causes of the construct? If consequences: reflective If causes: formative Rossieter (2002) Reflective Measurement Model Formative Measurement Model Indicator 1 Indicator 1 Construct Construct Indicator 2 Indicator 2 Indicator 3 Indicator 3 Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Reflective Construct ? Formative Construct ? 4 Are the items mutually interchangeable? If yes: reflective If no: formative Jarvis, MacKenzie, and Podsakoff (2003) Reflective Measurement Model Formative Measurement Model Indicator 1 Indicator 1 Construct Construct Indicator 2 Indicator 2 Indicator 3 Indicator 3 Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Structured Equation Modeling (SEM) Source: Nils Urbach and Frederik Ahlemann (2010) "Structural equation modeling in information systems research using partial least squares, " Journal of Information Technology Theory and Application, 11(2), 5-40.

Structured Equation Modeling (SEM) with Partial Least Squares (PLS) Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Framework for Applying PLS in Structural Equation Modeling Source: Nils Urbach and Frederik Ahlemann (2010) "Structural equation modeling in information systems research using partial least squares, " Journal of Information Technology Theory and Application, 11(2), 5-40.

Prediction (Theory Development) CB-SEM vs. PLS-SEM CB-SEM PLS-SEM Theory Testing Prediction (Theory Development) Source: Nils Urbach and Frederik Ahlemann (2010) "Structural equation modeling in information systems research using partial least squares, " Journal of Information Technology Theory and Application, 11(2), 5-40.

Source: Joseph F. Hair, G. Tomas M. Hult, Christian M Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Use of Structural Equation Modeling Tools 1994-1997 Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Comparative Analysis between Techniques Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Capabilities by Research Approach Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

TAM Model and Hypothesis Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

TAM Causal Path Findings via Linear Regression Analysis Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Factor Analysis and Reliabilities for Example Dataset Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

TAM Standardized Causal Path Findings via LISREL Analysis Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Standardized Loadings and Reliabilities in LISREL Analysis Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

TAM Causal Path Findings via PLS Analysis Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Loadings in PLS Analysis Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

AVE and Correlation Among Constructs in PLS Analysis Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Generic Theoretical Network with Constructs and Measures Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Number of Covariance-based SEM Articles Reporting SEM Statistics in IS Research Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Number of PLS Studies Reporting PLS Statistics in IS Research (Rows in gray should receive special attention when reporting results) Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Structure Model Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Structure Model Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Measurement Model Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

SEM The holistic analysis that SEM is capable of performing is carried out via one of two distinct statistical techniques: 1. covariance analysis – employed in LISREL, EQS and AMOS 2. partial least squares – employed in PLS and PLS-Graph Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Comparative Analysis Based on Statistics Provided by SEM Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Comparative Analysis Based on Capabilities Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Comparative Analysis Based on Capabilities Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Heuristics for Statistical Conclusion Validity (Part 1) Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Heuristics for Statistical Conclusion Validity (Part 2) Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

A Practical Guide To Factorial Validity Using PLS-Graph Gefen, David and Straub, Detmar (2005) "A Practical Guide To Factorial Validity Using PLS-Graph: Tutorial And Annotated Example," Communications of the Association for Information Systems: Vol. 16, Article 5. Available at: http://aisel.aisnet.org/cais/vol16/iss1/5 Source: Gefen, David and Straub, Detmar (2005)

Source: Gefen, David and Straub, Detmar (2005) PLS-Graph Model Source: Gefen, David and Straub, Detmar (2005)

Extracting PLS-Graph Model Source: Gefen, David and Straub, Detmar (2005)

Displaying the PLS-Graph Model Source: Gefen, David and Straub, Detmar (2005)

PCA with a Varimax Rotation of the Same Data Source: Gefen, David and Straub, Detmar (2005)

Source: Gefen, David and Straub, Detmar (2005) Correlations in the lst file as compared with the Square Root of the AVE Source: Gefen, David and Straub, Detmar (2005)

Explaining Information Technology Usage: A Test of Competing Models Source: Premkumar, G., and Anol Bhattacherjee (2008), "Explaining information technology usage: A test of competing models," Omega 36(1), 64-75.

Explaining Information Technology Usage: A Test of Competing Models Source: Premkumar, G., and Anol Bhattacherjee (2008), "Explaining information technology usage: A test of competing models," Omega 36(1), 64-75.

Explaining Information Technology Usage: A Test of Competing Models Source: Premkumar, G., and Anol Bhattacherjee (2008), "Explaining information technology usage: A test of competing models," Omega 36(1), 64-75.

Explaining Information Technology Usage: A Test of Competing Models Source: Premkumar, G., and Anol Bhattacherjee (2008), "Explaining information technology usage: A test of competing models," Omega 36(1), 64-75.

Explaining Information Technology Usage: A Test of Competing Models Source: Premkumar, G., and Anol Bhattacherjee (2008), "Explaining information technology usage: A test of competing models," Omega 36(1), 64-75.

Explaining Information Technology Usage: A Test of Competing Models Source: Premkumar, G., and Anol Bhattacherjee (2008), "Explaining information technology usage: A test of competing models," Omega 36(1), 64-75.

Summary Confirmatory Factor Analysis (CFA) Structured Equation Modeling (SEM) Partial-least-squares (PLS) based SEM (PLS-SEM) PLS Covariance based SEM (CB-SEM) LISREL

References Joseph F. Hair, William C. Black, Barry J. Babin, Rolph E. Anderson (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000) "Structural Equation Modeling and Regression: Guidelines for Research Practice," Communications of the Association for Information Systems: Vol. 4, Article 7. Available at: http://aisel.aisnet.org/cais/vol4/iss1/7 Straub, Detmar; Boudreau, Marie-Claude; and Gefen, David (2004) "Validation Guidelines for IS Positivist Research," Communications of the Association for Information Systems: Vol. 13, Article 24. Available at: http://aisel.aisnet.org/cais/vol13/iss1/24 Gefen, David and Straub, Detmar (2005) "A Practical Guide To Factorial Validity Using PLS-Graph: Tutorial And Annotated Example," Communications of the Association for Information Systems: Vol. 16, Article 5. Available at: http://aisel.aisnet.org/cais/vol16/iss1/5 Urbach, Nils, and Frederik Ahlemann (2010) "Structural equation modeling in information systems research using partial least squares, " Journal of Information Technology Theory and Application, 11(2), 5-40. Available at: http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1247&context=jitta Premkumar, G., and Anol Bhattacherjee (2008), "Explaining information technology usage: A test of competing models," Omega 36(1), 64-75. 蕭文龍 (2016), 統計分析入門與應用:SPSS中文版+SmartPLS 3(PLS_SEM), 碁峰資訊