 A few notes on testing  Preliminary tests  Computed Tomography  Astrophysics  Molecular Dynamics  HS COSA f2f - 18/05/ Lucia Morganti – INFN-CNAF.

Slides:



Advertisements
Similar presentations
Daniel Schall, Volker Höfner, Prof. Dr. Theo Härder TU Kaiserslautern.
Advertisements

Effects of galaxy formation on dark matter haloes Susana Pedrosa Patricia Tissera, Cecilia Scannapieco Chile 2010.
GPU System Architecture Alan Gray EPCC The University of Edinburgh.
HPCC Mid-Morning Break High Performance Computing on a GPU cluster Dirk Colbry, Ph.D. Research Specialist Institute for Cyber Enabled Discovery.
Why GPU Computing. GPU CPU Add GPUs: Accelerate Science Applications © NVIDIA 2013.
Clusters & Super Clusters Large Scale Structure Chapter 22.
BIG BANG. EVIDENCE FOR BIG BANG Hot Big Bang Model: The universe began expanding a finite time ago from a very dense, very hot initial state. Dense Dense.
OpenFOAM on a GPU-based Heterogeneous Cluster
Numerical issues in SPH simulations of disk galaxy formation Tobias Kaufmann, Lucio Mayer, Ben Moore, Joachim Stadel University of Zürich Institute for.
Particle Astrophysics & Cosmology SS Chapter 7 Dark Matter.
Studying the mass assembly and luminosity gap in fossil groups of galaxies from the Millennium Simulation Ali Dariush, University of Birmingham Studying.
Shimin Chen Big Data Reading Group Presented and modified by Randall Parabicoli.
ALICE TPC Online Tracking on GPU David Rohr for the ALICE Corporation Lisbon.
Simon Portegies Zwart (Univ. Amsterdam with 2 GRAPE-6 boards)
Particle Astrophysics & Cosmology SS Chapter 8 Structure Formation.
Cosmological N-body simulations of structure formation Jürg Diemand, Ben Moore and Joachim Stadel, University of Zurich.
GPU vs. CPU computations Árni Einarsson Jacek Kolodziej.
Computing on Low Power SoC Architecture
THE STRUCTURE OF COLD DARK MATTER HALOS J. Navarro, C. Frenk, S. White 2097 citations to NFW paper to date.
Astrophysics & Cosmology Sabine Schindler Institute for Astrophysics University of Innsbruck.
HPCC Mid-Morning Break Dirk Colbry, Ph.D. Research Specialist Institute for Cyber Enabled Discovery Introduction to the new GPU (GFX) cluster.
Modelling radio galaxies in simulations: CMB contaminants and SKA / Meerkat sources by Fidy A. RAMAMONJISOA MSc Project University of the Western Cape.
Effects of baryons on the structure of massive galaxies and clusters Oleg Gnedin University of Michigan Collisionless N-body simulations predict a nearly.
GPU Cluster for Scientific Computing Zhe Fan, Feng Qiu, Arie Kaufman, Suzanne Yoakum-Stover Center for Visual Computing and Department of Computer Science,
INAF Osservatorio Astrofisico di Catania “ScicomP 9” Bologna March 23 – Using LAPI and MPI-2 in an N-body cosmological code on IBM SP in an N-body.
Impact of Early Dark Energy on non-linear structure formation Margherita Grossi MPA, Garching Volker Springel Advisor : Volker Springel 3rd Biennial Leopoldina.
Advisor: Dr. Aamir Shafi Co-Advisor: Mr. Ali Sajjad Member: Dr. Hafiz Farooq Member: Mr. Tahir Azim Optimizing N-body Simulations for Multi-core Compute.
Maxime KUBRYK, IAP, Ph.D student advisors: Nikos PRANTZOS, IAP Lia ATHANASSOULA, OAMP LIA-ORIGINS, May 2012.
Tracking with CACTuS on Jetson Running a Bayesian multi object tracker on an embedded system School of Information Technology & Mathematical Sciences September.
GPU Architecture and Programming
Sean Passmoor Supervised by Dr C. Cress Simulating the Radio Sky.
ランダウ共鳴が与えるダークマ ターハロー密度構造への影響 ○ 扇谷 豪 森 正夫 ( 筑波大 ).
Impact of the convergence of three worlds: High-Performance Computing, Databases, and Analytics Stefan Manegold
1)Leverage raw computational power of GPU  Magnitude performance gains possible.
Simulations by Ben Moore (Univ. of Zurich)
The Astrophysical MUltiscale Software Environment (AMUSE) P-I: Portegies Zwart Co-Is: Nelemans, Pols, O’Nuallain, Spaans Adv.: Langer, Tolstoy, Hut, Ercolano,
GRAPE 현황. Hardware Configuration Master –2 x Dual Core Xeon 5130 (2 GHz) –2 GB memory –500 GB hard disk 4 Slaves –2 x Dual Core Xeon 5130 (2 GHz) –1 GB.
Scientific Computing Goals Past progress Future. Goals Numerical algorithms & computational strategies Solve specific set of problems associated with.
+ The INFN COSA project Daniele Cesini – INFN-CNAF (On behalf of the COSA collaboration)
+ The INFN COSA project Tommaso Boccali (alcune slides riadattate da Daniele Cesini)
Canadian Bioinformatics Workshops
GPU Acceleration of Particle-In-Cell Methods B. M. Cowan, J. R. Cary, S. W. Sides Tech-X Corporation.
ChaNGa CHArm N-body GrAvity. Thomas Quinn Graeme Lufkin Joachim Stadel Laxmikant Kale Filippo Gioachin Pritish Jetley Celso Mendes Amit Sharma.
ChaNGa CHArm N-body GrAvity. Thomas Quinn Graeme Lufkin Joachim Stadel Laxmikant Kale Filippo Gioachin Pritish Jetley Celso Mendes Amit Sharma.
Mini Review: Ocam’s Razor: Start out with simplest assumptions Hot Big Bang, Expanding Universe: Only baryonic matter => CMB existence, universe old and.
+ The INFN COSA project Michele Michelotto
Unit 2 Technology Systems
GPGPU use cases from the MoBrain community
Progress Report 2014/05/23.
GPU Computing Jan Just Keijser Nikhef Jamboree, Utrecht
Santiago Roca-Fàbrega
Low Power processors in HEP
Thermal Expansion.
The mock galaxy catalogue for HI survey based on SAMs of galaxy formation 富坚 Guiyang, FRA2015 Shanghai Astronomical Observatory.
Tamas Szalay, Volker Springel, Gerard Lemson
Comparing dual- and quad-core performance
CERN Benchmarking Cluster
Lecture 5: GPU Compute Architecture
Linchuan Chen, Xin Huo and Gagan Agrawal
Lecture 5: GPU Compute Architecture for the last time
Course Outline Introduction in algorithms and applications
Hybrid Programming with OpenMP and MPI
Hardware Accelerated Video Decoding in
Insulators and Conductors
German Astrophysical Virtual Observatory
Core of Coma Cluster (optical)
P3MSPH-GRAPE Simulations with FIRST Cluster
Computer simulation studies of forced rupture kinetics of
Brightest ~500,000 Galaxies in the Northern Hemisphere (1977; RA & DEC only) 2-D “lacework” pattern.
Argon Phase 3 Feedback June 4, 2019.
Presentation transcript:

 A few notes on testing  Preliminary tests  Computed Tomography  Astrophysics  Molecular Dynamics  HS COSA f2f - 18/05/ Lucia Morganti – INFN-CNAF

+ COSA f2f - 18/05/2015 To avoid dynamic CPU frequency scaling and to maximize CPU performance: use cpufrequtils, e.g. cpufreq-set --governor performance ( To controll GPU performance (Jetson): set a supported rate with echo > /sys/kernel/debug/clock/override.gbus/rate ( e-know-how-to-monitor-the-gpu-mhz-/) e-know-how-to-monitor-the-gpu-mhz-/ CPUs become online only when the scheduler judges there’s enough work to do. To manually force the 4 main CPU cores (Jetson) to run: ( 3 Lucia Morganti – INFN-CNAF

+ COSA f2f - 18/05/2015 We compute power consumption by measuring the flow of electrical current and knowing the voltage. We do not subtract power consumption of the idle board. 4 Lucia Morganti – INFN-CNAF

COSA f2f - 18/05/ Lucia Morganti – INFN-CNAF

x 20 COSA f2f - 18/05/2015Lucia Morganti – INFN-CNAF 6 CPU ONLY

+ COSA f2f - 18/05/2015Lucia Morganti – INFN-CNAF 7 CPU ONLY x 4.6

COSA f2f - 18/05/2015 fftw3 on CPUs cuFFT on GPUs Lower is better 8 Lucia Morganti – INFN-CNAF CPU & GPU

COSA f2f - 18/05/ Lucia Morganti – INFN-CNAF CPU & GPU fftw3 on CPUs cuFFT on GPUs Higher is better

COSA f2f - 18/05/ Lucia Morganti – INFN-CNAF Master thesis of Elena Corni : Implementazione dell’algoritmo Filtered Back-Projection (FBP) per architetture Low-Power di tipo Systems-On-Chip

COSA f2f - 18/05/ x 1024 pixel 11 Lucia Morganti – INFN-CNAF CPU &GPU Lower is better

COSA f2f - 18/05/ x 1024 pixel 12 Lucia Morganti – INFN-CNAF Lower is better On (2xE K20): 3241 slices in 1 h: 350 Wh On 5 x Jetson-K1: 3840 slices in 1 h: 41 Wh

COSA f2f - 18/05/ Lucia Morganti – INFN-CNAF Gadget-2 : MPI code for cosmological simulations by Volker Springel

 disk + halo particles, Barnes Hut N-body simulation  Jetson-K W  Xeon ~220 W COSA f2f - 18/05/ Lucia Morganti – INFN-CNAF CPU ONLY

COSA f2f - 18/05/ Lucia Morganti – INFN-CNAF

COSA f2f - 18/05/ Lucia Morganti – INFN-CNAF CPU ONLY particles, formation of a cluster of galaxies in an expanding Universe

COSA f2f - 18/05/ Lucia Morganti – INFN-CNAF

18 CPU ONLY  32 3 dark matter particles, 32 3 gas particles in a box 50 Mpc size, following structure formation in an evolving Universe, with adiabatic gas physics Gas particles Gas particles with T>10 6 K

COSA f2f - 18/05/ Lucia Morganti – INFN-CNAF

 Jetson-K1 about 2.6X slower than Xeon using 4 CPU cores, and about 4.4X slower using 8 CPU cores  Jetson-K W  Xeon ~220 W COSA f2f - 18/05/ particles in a cube of 250 Mpc side, 13.6 Gyr 20 Lucia Morganti – INFN-CNAF CPU ONLY

COSA f2f - 18/05/ Lucia Morganti – INFN-CNAF

COSA f2f - 18/05/ Lucia Morganti – INFN-CNAF

 Jetson-K1 about 10X slower using the same number of CPU cores  Jetson-K1 about 10X slower using the GPU (vs. an NVIDIA K20) Jetson-K W Xeon+K20 ~320 W COSA f2f - 18/05/ Jetson MPI 23 Lucia Morganti – INFN-CNAF Lower is better 2 Jetson MPI 1 Jetson CUDA CPU & GPU

COSA f2f - 18/05/ Lucia Morganti – INFN-CNAF

COSA f2f - 18/05/2015 HS06 on Exynos5, TegraK1 and Atom C2750 – Per core loaded (data from ) 25 Lucia Morganti – INFN-CNAF

 Tests were ok on the Jetson, for 4 cores  NFS doesn’t work, eMMC works  For 8 core boards (Odroid & Cubieboard), 1.5 GB of RAM are not enough for 8 processes  So, for the Odroid, we put swap on eMMC, faster than SSD  Now testing the Cubieboard, seems ok COSA f2f - 18/05/2015Lucia Morganti – INFN-CNAF 26

COSA f2f - 18/05/2015Lucia Morganti – INFN-CNAF 27