Knowledge Representation XI – IKT437 Part II OWL, SPARQL, …

Slides:



Advertisements
Similar presentations
1 ISWC-2003 Sanibel Island, FL IMG, University of Manchester Jeff Z. Pan 1 and Ian Horrocks 1,2 {pan | 1 Information Management.
Advertisements

Three Theses of Representation in the Semantic Web
SPARQL Dimitar Kazakov, with references to material by Noureddin Sadawi ARIN, 2014.
CH-4 Ontologies, Querying and Data Integration. Introduction to RDF(S) RDF stands for Resource Description Framework. RDF is a standard for describing.
Chronos: A Tool for Handling Temporal Ontologies in Protégé
RDF Schemata (with apologies to the W3C, the plural is not ‘schemas’) CSCI 7818 – Web Technologies 14 November 2001 Van Lepthien.
An Introduction to RDF(S) and a Quick Tour of OWL
Master Informatique 1 Semantic Technologies Part 4Jena Werner Nutt.
JENA –A SEMANTIC WEB TOOL by Ranjani Sankaran & krishna Priyanka Chebrolu.
Presented by Amr Ali AL-Hossary (M.B.,B.Ch)
Of 27 lecture 7: owl - introduction. of 27 ece 627, winter ‘132 OWL a glimpse OWL – Web Ontology Language describes classes, properties and relations.
ISBN Chapter 3 Describing Syntax and Semantics.
Building and Analyzing Social Networks Web Data and Semantics in Social Network Applications Dr. Bhavani Thuraisingham February 15, 2013.
Descriptions Robert Grimm New York University. The Final Assignment…  Your own application  Discussion board  Think: Paper summaries  Web cam proxy.
COMP 6703 eScience Project Semantic Web for Museums Student : Lei Junran Client/Technical Supervisor : Tom Worthington Academic Supervisor : Peter Strazdins.
Describing Syntax and Semantics
1 DCS861A-2007 Emerging IT II Rinaldo Di Giorgio Andres Nieto Chris Nwosisi Richard Washington March 17, 2007.
Managing Large RDF Graphs (Infinite Graph) Vaibhav Khadilkar Department of Computer Science, The University of Texas at Dallas FEARLESS engineering.
A Generic Software Framework for building Hybrid Ontology-Backed Models for Driving Applications Colin Puleston, James Cunningham, Alan Rector Bio-Health.
1 Representing Data with XML September 27, 2005 Shawn Henry with slides from Neal Arthorne.
The Jena RDF Framework Konstantinos Tzonas. Contents What is Jena Capabilities of Jena Basic notions RDF concepts in Jena Persistence Ontology management.
OWL 2 in use. OWL 2 OWL 2 is a knowledge representation language, designed to formulate, exchange and reason with knowledge about a domain of interest.
Presentation : Konstantinos Kanaris.  What is Jena?  Usage of Jena  Main Concepts  Main Components  Storage Models  OWL API  RDF API  Reasoning.
Michael Eckert1CS590SW: Web Ontology Language (OWL) Web Ontology Language (OWL) CS590SW: Semantic Web (Winter Quarter 2003) Presentation: Michael Eckert.
Metadata. Generally speaking, metadata are data and information that describe and model data and information For example, a database schema is the metadata.
Coastal Atlas Interoperability - Ontologies (Advanced topics that we did not get to in detail) Luis Bermudez Stephanie Watson Marine Metadata Interoperability.
Advanced topics in software engineering (Semantic web)
Deep integration of Python with Semantic Web technologies Marian Babik, Ladislav Hluchy Intelligent and Knowledge Technologies Group Institute of Informatics,
Efficient RDF Storage and Retrieval in Jena2 Written by: Kevin Wilkinson, Craig Sayers, Harumi Kuno, Dave Reynolds Presented by: Umer Fareed 파리드.
EEL 5937 Ontologies EEL 5937 Multi Agent Systems Lecture 5, Jan 23 th, 2003 Lotzi Bölöni.
User Profiling using Semantic Web Group members: Ashwin Somaiah Asha Stephen Charlie Sudharshan Reddy.
The Semantic Web Riccardo Rosati Dottorato in Ingegneria Informatica Sapienza Università di Roma a.a. 2006/07.
Practical RDF Chapter 12. Ontologies: RDF Business Models Shelley Powers, O’Reilly SNU IDB Lab. Taikyoung Kim.
WonderWeb. Ontology Infrastructure for the Semantic Web. IST Project Review Meeting, 11 th March, WP2: Tools Raphael Volz Universität.
OWL Web Ontology Language Summary IHan HSIAO (Sharon)
CSC3315 (Spring 2009)1 CSC 3315 Languages & Compilers Hamid Harroud School of Science and Engineering, Akhawayn University
Semantic Interoperability in GIS N. L. Sarda Suman Somavarapu.
Mathematical Service Matching Using Description Logic and OWL Kamelia Asadzadeh Manjili
Ontology Technology applied to Catalogues Paul Kopp.
1 Knowledge Representation XI – IKT437 Knowledge Representation XI – IKT437 Part I RDF Jan Pettersen Nytun, UiA Apache Jena.
Semantics of RDF(S) and OWL Ivan Herman, W3C (Last update: 28 Sep 2007) Ivan Herman.
Knowledge Representation Part I Ontology Jan Pettersen Nytun Knowledge Representation Part I, JPN, UiA1.
1 RDF Storage and Retrieval Systems Jan Pettersen Nytun, UiA.
1 Knowledge Representation XII – IKT437 Knowledge Representation XII – IKT437 Part III Div Jan Pettersen Nytun, UiA Apache Jena.
OWL (Ontology Web Language and Applications) Maw-Sheng Horng Department of Mathematics and Information Education National Taipei University of Education.
Jena Ontology API 4/14/2018.
Charlie Abela Department of Intelligent Computer Systems
Knowledge Representation Part V RDF
Working with Java.
Reasoning with Rules SWRL as Example
Knowledge Representation Part II Description Logic & Introduction to Protégé Jan Pettersen Nytun.
Knowledge Representation Part VII Protégé / RDFS / OWL / ++
Building Trustworthy Semantic Webs
Jena 6/8/2018.
Introduction to the Semantic Web (tutorial) 2009 Semantic Technology Conference San Jose, California, USA June 15, 2009 Ivan Herman, W3C
Service-Oriented Computing: Semantics, Processes, Agents
Knowledge Representation Part II
Jan Pettersen Nytun, UiA
SPARQL Exercise Much of this exercise has been copied from: INF3580/INF4580 – MANDATORY EXERCISE 3
Bus Routes.
Analyzing and Securing Social Networks
Ontology.
ece 720 intelligent web: ontology and beyond
Linking Guide Michel Böhms.
SPARQL Exercise Most of this exercise has been copied from: INF3580/INF4580 – MANDATORY EXERCISE 3
The Jena RDF Framework Konstantinos Tzonas.
Ontology.
Semantic Markup for Semantic Web Tools:
Focus of the Course Object-Oriented Software Development
A type is a collection of values
Presentation transcript:

Knowledge Representation XI – IKT437 Part II OWL, SPARQL, … Apache Jena Knowledge Representation XI – IKT437 Part II OWL, SPARQL, … Jan Pettersen Nytun, UiA

This presentation is based on: Jena Ontology API http://jena. apache

… Jena is fundamentally an RDF platform, … limited to ontology formalisms built on top of RDF. … this means RDFS, the varieties of OWL.

The OWL language is sub-divided into three syntax classes:  OWL Lite, OWL DL and OWL Full. [Wikipedia]: Every legal OWL Lite ontology is a legal OWL DL ontology. Every legal OWL DL ontology is a legal OWL Full ontology.

[Wikipedia]: OWL Lite was originally intended to support those users primarily needing a classification hierarchy and simple constraints … Development of OWL Lite tools has … proven almost as difficult as development of tools for OWL DL, and OWL Lite is not widely used.

[Wikipedia]: OWL DL is designed to provide the maximum expressiveness possible while retaining computational completeness, decidability, and the availability of practical reasoning algorithms. OWL DL includes all OWL language constructs, but they can be used only under certain restrictions …

Completeness [Wikipedia]: In mathematical logic, a theory is complete if it is a maximal consistent set of sentences, i.e., if it is consistent, and none of its proper extensions is consistent. For theories in logics which contain classical propositional logic, this is equivalent to asking that for every sentence φ in the language of the theory it contains either φ itself or its negation ¬φ. Upper case: Φ lower case: φ = phi (pronounced “pai”) Φ is either true or false in the theory…

Gödel's incompleteness theorem [Wikipedia]: Recursively axiomatizable first-order theories that are rich enough to allow general mathematical reasoning to be formulated cannot be complete, as demonstrated by Gödel's incompleteness theorem. … For any such system, there will always be statements about the natural numbers that are true, but that are unprovable within the system.

Decidability [Wikipedia]: The logically valid formulas of a system are sometimes called the theorems of the system, … A logical system is decidable if there is an effective method for determining whether arbitrary formulas are theorems of the logical system. Upper case: Φ lower case: φ = phi (pronounced “pai”) Φ is either true or false in the theory…

[Wikipedia]: OWL Full[edit] … a class can be treated simultaneously as a collection of individuals and as an individual in its own right ... OWL Full allows an ontology to augment the meaning of the pre-defined (RDF or OWL) vocabulary. OWL Full is undecidable, so no reasoning software is able to perform complete reasoning for it.

The Jena Ontology API is language-neutral The Java class names are not specific to the underlying language. For example, the OntClass Java class can represent an OWL class or RDFS class. To represent the differences between the various representations, each of the ontology languages has a profile, which lists the permitted constructs and the names of the classes and properties.

The Profile The profile is bound to an ontology model, which is an extended version of Jena's Model class. The base Model allows access to the statements in a collection of RDF data. OntModel extends this by adding support for the kinds of constructs expected to be in an ontology: classes (in a class hierarchy), properties (in a property hierarchy) and individuals.

The Profile Continues … The ontology API doesn't change the RDF representation of ontologies. It adds a set of convenience classes and methods that make it easier for you to write programs that manipulate the underlying RDF triples.

OntClass The predicate names defined in the ontology language correspond to the accessor methods on the Java classes in the API. For example, an OntClass has a method to list its super-classes, which corresponds to the values of the subClassOf property in the RDF representation. This point is worth re-emphasizing: no information is stored in the OntClass object itself. When you call the OntClass listSuperClasses() method, Jena will retrieve the information from the underlying RDF triples. Similarly, adding a subclass to an OntClass asserts an additional RDF triple, typically with predicate rdfs:subClassOf into the model.

Jena Graph Interface Graph is an internal Jena interface that supports the composition of sets of RDF triples. The asserted statements, which may have been read in from an ontology document, are held in the base graph.

The reasoner, or inference engine, can use the contents of the base graph and the semantic rules of the language to show a more complete set of base and entailed triples. This is also presented via a Graph interface, so the OntModel works only with the outermost interface.

The base graph can be an in-memory store, a database-backed persistent store, or some other storage structure altogether …

RDF-level polymorphism and Java At the same time the following may be “true” (Restriction is a subclass of Class) :

RDF-level polymorphism and Java Continues … The problem we then have is that Java does not allow us to dynamically change the Java class of the object representing this resource. Jena accepts this basic characteristic of polymorphism at the RDF level by considering that the Java abstraction (OntClass, Restriction, DatatypeProperty, etc.) is just a view or facet of the resource. If the resource is typed as an owl:Class, it can present the OntClass facet; given other types, it can present other facets. Jena provides the .as() method to efficiently map from an RDF object to one of its allowable facets.

RDF-level polymorphism and Java Continues … Resource r = myModel.getResource( myNS + "DigitalCamera" ); OntClass cls = r.as( OntClass.class ); If a given RDFNode will not support the conversion to a given facet, it will raise a ConversionException. We can test whether .as() will succeed for a given facet with canAs().

Creating Ontology Models OntModel m = ModelFactory.createOntologyModel(); This will create an ontology model with the default settings: OWL-Full language in-memory storage RDFS inference, which principally produces entailments from the sub-class and sub-property hierarchies.

An OWL model that performs no reasoning at all can be created with: In many applications, such as driving a GUI, RDFS inference is too strong.  An OWL model that performs no reasoning at all can be created with: OntModel m = ModelFactory.createOntologyModel( OntModelSpec.OWL_MEM );

Testing Reasoning in Jena Input Ontology @prefix : <http://www.uia.no/janpettersennytun/inference#> . @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix owl: <http://www.w3.org/2002/07/owl#> . @prefix xml: <http://www.w3.org/XML/1998/namespace> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . :hasApprovedId a owl:DatatypeProperty ; rdfs:subPropertyOf :hasSomeId . :hasSomeId a owl:DatatypeProperty . :hasHusband a owl:ObjectProperty ; owl:inverseOf :hasWife . :hasWife a owl:ObjectProperty . :Man a owl:Class ; rdfs:subClassOf :Human . :Woman a owl:Class ; rdfs:subClassOf :Human . :Human a owl:Class . :Homer a owl:NamedIndividual , :Man ; :hasSomeId "Homer_ID1_SomeID" . :Marge a owl:NamedIndividual , :Woman ; :hasApprovedId "Marge_ID1_Approved" ; :hasHusband :Homer .

Testing Reasoning in Jena Application Heading package testreasoners; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.InputStream; import java.io.OutputStream; import java.util.ArrayList; import java.util.Collections; import java.util.List; import org.apache.jena.ontology.OntModel; import org.apache.jena.ontology.OntModelSpec; import org.apache.jena.rdf.model.Model; import org.apache.jena.rdf.model.ModelFactory; import org.apache.jena.rdf.model.Property; import org.apache.jena.rdf.model.RDFNode; import org.apache.jena.rdf.model.Resource; import org.apache.jena.rdf.model.Statement; import org.apache.jena.rdf.model.StmtIterator; import org.apache.jena.util.FileManager;

Testing Reasoning in Jena Method Overview public class TestReasoners { private static String inputFileName = "InferenceTest__InputFile.ttl"; private static String outputFileName = "InferenceTest__OutputFile.ttl"; public static void main(String[] args){ … } public static List<String> getSortedTriples(Model model){ … } public static OntModel readFile(OntModelSpec ontModelSpec){ … } }

Testing Reasoning in Jena readFile - Method public static OntModel readFile(OntModelSpec ontModelSpec){ OntModel ontModel = ModelFactory.createOntologyModel(ontModelSpec); InputStream in = FileManager.get().open( inputFileName ); if (in == null) { System.out.println("File: " + inputFileName + " not found"); System.exit(1); } // read the Turtle file ontModel.read(in, null, "Turtle"); //ontModel.write(System.out, "Turtle"); return ontModel;

Testing Reasoning in Jena getSortedTriples- Method public static List<String> getSortedTriples(Model model){ List<String> triples = new ArrayList<String>(); StmtIterator iter = model.listStatements(); String format = "%-20s"; String defaultNamespace = model.getNsPrefixMap().get(""); if (defaultNamespace == null) return triples;

while (iter. hasNext()) { Statement stmt = iter while (iter.hasNext()) { Statement stmt = iter.nextStatement(); // get next statement Resource subject = stmt.getSubject(); // get the subject String namespace = subject.getNameSpace(); if (namespace == null || !namespace.equals(defaultNamespace)) continue; Property predicate = stmt.getPredicate(); // get the predicate RDFNode object = stmt.getObject(); // get the object String tripleAsString = String.format(format, subject.getLocalName().toString()); tripleAsString = tripleAsString + String.format(format, predicate.getLocalName().toString()); if (object instanceof Resource) { tripleAsString = tripleAsString + object.asResource().getLocalName().toString() + " ."; } else { // object is a literal tripleAsString = tripleAsString + " \"" + object.toString() + "\"" + " ."; } triples.add(tripleAsString); Collections.sort(triples); return triples; }

public static void main(String[] args){ OntModel model_OWL_DL_MEM = readFile(OntModelSpec.OWL_DL_MEM); List<String> triples_OWL_DL_MEM = getSortedTriples(model_OWL_DL_MEM); System.out.println("Triple found in model_OWL_DL_MEM"); System.out.println("............................................................................."); for (String oneTriple : triples_OWL_DL_MEM) System.out.println(oneTriple); System.out.println(".............................................................................\n"); model_OWL_DL_MEM.close(); …

Triple found in model_OWL_DL_MEM. Homer hasSomeId "Homer_ID1_SomeID" Triple found in model_OWL_DL_MEM ................................................................ Homer hasSomeId "Homer_ID1_SomeID" . Homer type Man . Homer type NamedIndividual . Human type Class . Man subClassOf Human . Man type Class . Marge hasApprovedId "Marge_ID1_Approved" . Marge hasHusband Homer . Marge type NamedIndividual . Marge type Woman . Woman subClassOf Human . Woman type Class . hasApprovedId subPropertyOf hasSomeId . hasApprovedId type DatatypeProperty . hasHusband inverseOf hasWife . hasHusband type ObjectProperty . hasSomeId type DatatypeProperty . hasWife type ObjectProperty .

OntModel model_OWL_DL_MEM_RDFS_INF = readFile(OntModelSpec OntModel model_OWL_DL_MEM_RDFS_INF = readFile(OntModelSpec.OWL_DL_MEM_RDFS_INF); List<String> triples_OWL_DL_MEM_RDFS_INF = getSortedTriples(model_OWL_DL_MEM_RDFS_INF); System.out.println("Triple found in model_OWL_DL_MEM_RDFS_INF"); System.out.println("............................................................................."); for (String oneTriple : triples_OWL_DL_MEM_RDFS_INF) { System.out.println(oneTriple); } System.out.println(".............................................................................\n"); model_OWL_DL_MEM_RDFS_INF.close();

Triple found in model_OWL_DL_MEM_RDFS_INF Triple found in model_OWL_DL_MEM_RDFS_INF ................................................................. Homer hasSomeId "Homer_ID1_SomeID" . Homer type Human . Homer type Man . Homer type NamedIndividual . Human subClassOf Human . Human type Class . Human type Resource . Man subClassOf Human . Man subClassOf Man . Man type Class . Man type Resource . Marge hasApprovedId "Marge_ID1_Approved" . Marge hasHusband Homer . Marge hasSomeId "Marge_ID1_Approved" . Marge type Human . Marge type NamedIndividual . Marge type Woman .

Woman subClassOf Human. Woman subClassOf Woman. Woman type Class Woman subClassOf Human . Woman subClassOf Woman . Woman type Class . Woman type Resource . hasApprovedId subPropertyOf hasApprovedId . hasApprovedId subPropertyOf hasSomeId . hasApprovedId type DatatypeProperty . hasApprovedId type Property . hasApprovedId type Resource . hasHusband inverseOf hasWife . hasHusband type ObjectProperty . hasSomeId subPropertyOf hasSomeId . hasSomeId type DatatypeProperty . hasSomeId type Property . hasSomeId type Resource . hasWife type ObjectProperty . .........................................................

OntModel model_OWL_DL_MEM_RULE_INF = readFile(OntModelSpec OntModel model_OWL_DL_MEM_RULE_INF = readFile(OntModelSpec.OWL_DL_MEM_RULE_INF); List<String> triples_OWL_DL_MEM_RULE_INF = getSortedTriples(model_OWL_DL_MEM_RULE_INF); System.out.println("Triple found in model_OWL_DL_MEM_RULE_INF"); System.out.println("............................................................................."); for (String oneTriple : triples_OWL_DL_MEM_RULE_INF) System.out.println(oneTriple); System.out.println(".............................................................................\n"); try { OutputStream outFile = new FileOutputStream(outputFileName); model_OWL_DL_MEM_RULE_INF.write(outFile,"Turtle"); } catch (FileNotFoundException e) { e.printStackTrace(); } model_OWL_DL_MEM_RULE_INF.close();

Triple found in model_OWL_DL_MEM_RULE_INF Triple found in model_OWL_DL_MEM_RULE_INF .................................................... Homer hasSomeId "Homer_ID1_SomeID" . Homer hasWife Marge . Homer sameAs Homer . Homer type Human . Homer type Man . Homer type NamedIndividual . Homer type Resource . Homer type Thing . Human equivalentClass Human . Human subClassOf Human . Human subClassOf Resource . Human subClassOf Thing . Human type Class . Human type Resource .

Man equivalentClass Man. Man subClassOf Human. Man subClassOf Man Man equivalentClass Man . Man subClassOf Human . Man subClassOf Man . Man subClassOf Resource . Man subClassOf Thing . Man type Class . Man type Resource . Marge hasApprovedId "Marge_ID1_Approved" . Marge hasHusband Homer . Marge hasSomeId "Marge_ID1_Approved" . Marge sameAs Marge . Marge type Human . Marge type NamedIndividual . Marge type Resource . Marge type Thing . Marge type Woman .

Woman equivalentClass Woman. Woman subClassOf Human Woman equivalentClass Woman . Woman subClassOf Human . Woman subClassOf Resource . Woman subClassOf Thing . Woman subClassOf Woman . Woman type Class . Woman type Resource . hasApprovedId subPropertyOf hasApprovedId . hasApprovedId subPropertyOf hasSomeId . hasApprovedId type DatatypeProperty . hasApprovedId type Property . hasApprovedId type Resource .

hasHusband domain Resource. hasHusband domain Thing hasHusband domain Resource . hasHusband domain Thing . hasHusband inverseOf hasWife . hasHusband range Resource . hasHusband range Thing . hasHusband subPropertyOf hasHusband . hasHusband type ObjectProperty . hasHusband type Property . hasHusband type Resource . hasSomeId subPropertyOf hasSomeId . hasSomeId type DatatypeProperty . hasSomeId type Property . hasSomeId type Resource .

hasWife domain Resource. hasWife domain Thing hasWife domain Resource . hasWife domain Thing . hasWife inverseOf hasHusband . hasWife range Resource . hasWife range Thing . hasWife subPropertyOf hasWife . hasWife type ObjectProperty . hasWife type Property . hasWife type Resource . ...................................................