The MATH and the Vernier System at Faculty of Aeronautics Štefan Berežný, Kristína Budajová, Eva Komová, Henrich Glaser-Opitz TECHNICAL UNIVERSITY IN KOŠICE.

Slides:



Advertisements
Similar presentations
Science Department Open House Integrating Technology into Science Courses.
Advertisements

Halomda Educational Software ( Established 1988) Mathematics and Science for Primary, Intermediate and High schools Computer Aided and e-Learning Math-XPress.
Lecture 5 Newton-Raphson Method
1 Using Octave to Introduce Programming to Technical Science Students Nuno C. Marques Francisco Azevedo CENTRIA, DI-
Physics Experiments for Mathematical Education Hans Kammer, Berner Maturitätsschule für Erwachsene, CH-3012 Berne, Switzerland.
THE DERIVATIVE AND THE TANGENT LINE PROBLEM
Developing Computer Simulations Using Object Oriented Programming. The Three Body Problem: A Case Study Mike O’Leary & Shiva Azadegan Towson University.
ROOTS OF EQUATIONS Student Notes ENGR 351 Numerical Methods for Engineers Southern Illinois University Carbondale College of Engineering Dr. L.R. Chevalier.
Mathematics1 Mathematics 1 Applied Informatics Štefan BEREŽNÝ.
Chapter 7 Numerical Differentiation and Integration
Today’s class Romberg integration Gauss quadrature Numerical Methods
Development of a software tool for use in University Physics Laboratories Doug Harper, Scott BonhamWestern Kentucky University.
A few words about convergence We have been looking at e a as our measure of convergence A more technical means of differentiating the speed of convergence.
CVEN Exam 1 Review. Matlab.m files Matlab.m files Programming: FOR, WHILE, IF and FUNCTION Programming: FOR, WHILE, IF and FUNCTION Taylor Series.
NUMERICAL METHODS WITH C++ PROGRAMMING
Integrating Problem-Solving and Educational Software
Numerical Solution of Ordinary Differential Equation
WELCOME ACS Beirut Elementary School Progress Reports.
Section 8.3 – Systems of Linear Equations - Determinants Using Determinants to Solve Systems of Equations A determinant is a value that is obtained from.
Solving Systems of Equations Graphically. Quadratic Equations/ Linear Equations  A quadratic equation is defined as an equation in which one or more.
Numerical Integration In general, a numerical integration is the approximation of a definite integration by a “weighted” sum of function values at discretized.
CMPS1371 Introduction to Computing for Engineers NUMERICAL METHODS.
4.6 Numerical Integration Trapezoid and Simpson’s Rules.
4.6 Numerical Integration. The Trapezoidal Rule One method to approximate a definite integral is to use n trapezoids.
IIT BOMBAY JANUARY, 2015 ‘Numerical Analysis’ with Visualization by Rasik R. Shah.
1 Numerical Integration Section Why Numerical Integration? Let’s say we want to evaluate the following definite integral:
ITERATIVE TECHNIQUES FOR SOLVING NON-LINEAR SYSTEMS (AND LINEAR SYSTEMS)
Chapter 1 Limits and Their Properties Unit Outcomes – At the end of this unit you will be able to: Understand what calculus is and how it differs from.
Monte Carlo Simulation and Personal Finance Jacob Foley.
Application of Differential Applied Optimization Problems.
Gain Mathematical in Calculus through Multiple Representations!
Evolution of math programs in French high schools Yves Coudert Math Teacher – France 12th April 2013 Pan European EDU Conference.
Section 6-1 continued Slope Fields. Definition A slope field or directional field for a differentiable equation is a collection of short line segments.
MECH4450 Introduction to Finite Element Methods Chapter 9 Advanced Topics II - Nonlinear Problems Error and Convergence.
Halomda Educational Software ( Established 1988) Mathematics and Science for Primary, Intermediate and High schools, Colleges and Universities Computer.
2.1 Position, Velocity, and Speed 2.1 Displacement  x  x f - x i 2.2 Average velocity 2.3 Average speed  
AP Calculus Unit 1 Day 1 What is Calculus?. Calculus is the study of CHANGE There are 2 Branches: 1)Differential Calculus 2)Integral Calculus.
Weight – Mass Experiment. Purpose To measure the mass of each object in grams using the triple beam balance. To convert the mass in grams to kilograms.
MECH593 Introduction to Finite Element Methods
Java for Engineers and Scientists 1 st Edition Gary J. Bronson.
Systems of Equations and Inequalities Advanced Math Chapter 9.
Trapezoidal Rule & Simpsons Rule AP Calculus Mrs. Mongold.
 The equation with one variable. At P(atm) equals 0.5 atm, What is T ? ? ?
Numerical Analysis Lecture 5.
Midpoint and Trapezoidal Rules
Situated learning and Technology
CS B553: Algorithms for Optimization and Learning
Derivative of an Exponential
Introduction Mathcad is a product of mathSoft inc. The Mathcad can help us to calculate, graph, and communicate technical ideas. It lets us work with.
Integration Review Problems
The Normal Distribution…
THE DERIVATIVE AND THE TANGENT LINE PROBLEM
Numerical Analysis Lecture 7.
Numerical Analysis Lecture 45.
ME 123 Computer Applications I Lecture 24: Character Strings 4/18/03
Computers in Civil Engineering 53:081 Spring 2003
MATH 175: Numerical Analysis II
Unit I C Language Review Ref. Book: Yashavant Kanetkar, “Let Us C”, BPB Publications, 10/E, 2010.
MATH-321 In One Slide MATH-321 & MATLAB Command.
WELCOME TO MY CLASS NUMERICAL METHOD Name : Masduki
Euler’s Method of Approximation and Slope Fields
ANSWER THE FOLLOWING BRIEFLY BUT COMPREHENSIVELY.
Assignment 1: due 1/16/19 Estimate all of the zero of x3-x2-2x+1 graphically. Write a MatLab code for Newton’s method. Use your code to refine the graphical.
Numerical Integration
Linear and Nonlinear Systems of Equations
GRAPHING LINEAR EQUATIONS
Linear and Nonlinear Systems of Equations
Introduction To MATLAB
ME 123 Computer Applications I Lecture 25: MATLAB Overview 4/28/03
Presentation transcript:

The MATH and the Vernier System at Faculty of Aeronautics Štefan Berežný, Kristína Budajová, Eva Komová, Henrich Glaser-Opitz TECHNICAL UNIVERSITY IN KOŠICE Faculty of Aeronautics

What is the MATH? Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz The MATH is the software application Open-source For Numerical calculations

Architecture and design Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz Nonlinear equation 2.Definite integration 3.Double definite integration 4.Numerical differentiation 5.System of linear equations 6.Matrix calculation 7.The least mean square approximation

Supported methods Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 20164

The MATH Graph Dialog Window Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 20165

Example (two graphs) Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 20166

Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz Nonlinear equation  Bisection method  Regula Falsi method  Secant method  Newton method  Iteration method

Main window for bisection method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 20168

Main window for Regula Falsi method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 20169

Main window for Newton method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

Main window for Secant method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

Main window for Iteration method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz Definite integration  Rectangular method  Trapezoid method  Simpson’s method  Monte Carlo Hit of Miss method  Monte Carlo Average method

Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz Main window for Rectangular method

Visualization of definite integration Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

Main window for Trapezoid method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

Main window for Simpson’s method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

Definite integration using Monte Carlo Hit or Miss method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

Graphical visualization of definite integration using Monte Carlo Hit or Miss method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

The least square approximation Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

Main window for the least square approximation Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

To summarize, the MATH application is designed to achieve several goals: Provide all calculation steps for each numerical method with easy to use graphical interface; Enable graphical visualization of calculated data as well as the option of exporting acquired data and graphs in suitable formats. Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

Vernier system Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz Vernier Software & Technology was founded in Portland, Oregon in 1981 in the home of David Vernier, a high- school physics teacher, and Christine Vernier, a local business manager.

Set of measurments Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz Interface LabQuest and software,

Set of measurments Sensors (magnetics field sensor) Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

Experiments Determination of kinematic viscosity Determination of gravitational acceleration Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

Determination of kinematic viscosity Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

Gravitational acceleration Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

List of instructions for students Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

To summarize, the main benefits to use of Vernier system are: It improves student understanding of science concepts. It supports engagement in higher order thinking skills, such as analysis, synthesis, and evaluation. It enables students to perform many new experiments and measurements not only in the laboratory. Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz

THANK YOU FOR YOUR ATTENTION Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz