Graphing Quadratic Functions Digital Lesson. 2 Quadratic function Let a, b, and c be real numbers a  0. The function f (x) = ax 2 + bx + c is called.

Slides:



Advertisements
Similar presentations
Quadratic Functions.
Advertisements

Quadratic Functions and Equations
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Quadratic graphs Today we will be able to construct graphs of quadratic equations that model real life problems.
Math 426 FUNCTIONS QUADRATIC.
Quadratic Functions.
Solving Quadratic Equations by Graphing
©2007 by S – Squared, Inc. All Rights Reserved. **RECALL**  Quadratic Function in general form: ax 2 + bx + c where a, b, and c are real number coefficients.
Graphing Quadratic Functions
1 of 18 Pre-Cal Chapter 2 Section 1 SAT/ACT Warm - up.
Graphing Quadratic Functions 2-1. Quadratics Exploration Patty paper parabola Desmos.com –y=ax^2+bx+c add sliders Copyright © by Houghton Mifflin Company,
Quadratic Functions. The graph of any quadratic function is called a parabola. Parabolas are shaped like cups, as shown in the graph below. If the coefficient.
1.8 QUADRATIC FUNCTIONS A function f defined by a quadratic equation of the form y = ax 2 + bx + c or f(x) = ax 2 + bx + c where c  0, is a quadratic.
© 2008 Pearson Addison-Wesley. All rights reserved Chapter 1 Section 8-5 Quadratic Functions, Graphs, and Models.
Graphing Quadratic Functions 2015/16 Digital Lesson.
JMerrill, 05 Revised 08 Section 31 Quadratic Functions.
Definition of a Polynomial Function in x of degree n.
Section 6 Part 1 Chapter 9. 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives More About Parabolas and Their Applications Find.
9.4 Graphing Quadratics Three Forms
Bell Ringer 4/2/15 Find the Axis of symmetry, vertex, and solve the quadratic eqn. 1. f(x) = x 2 + 4x f(x) = x 2 + 2x - 3.
1 Warm-up Factor the following x 3 – 3x 2 – 28x 3x 2 – x – 4 16x 4 – 9y 2 x 3 + x 2 – 9x - 9.
Graphing Quadratic Functions Chapter 2 – Section 2.
Graphing Quadratic Equations
2.4: Quadratic Functions.
Graphing Quadratic Functions Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Quadratic function Let a, b, and c be.
Pre-Calculus Honors Day Quadratic Functions - How do you write quadratic functions in standard form? - How to use quadratic functions to model and.
2.3 Quadratic Functions. A quadratic function is a function of the form:
Sections 11.6 – 11.8 Quadratic Functions and Their Graphs.
2.1 – Quadratic Functions.
3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally.
4.1 Quadratic Functions and Transformations A parabola is the graph of a quadratic function, which you can write in the form f(x) = ax 2 + bx + c, where.
1.2. Lesson 5.1& 5.2, Quadratics Most Missed on Test Solve the system: 3. ANSWER The length of a rectangle is 7.8 cm More than 4 times the width. Perimeter.
Graphing Quadratic Functions Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Quadratic function Let a, b, and c be.
Section 3.3 Quadratic Functions. A quadratic function is a function of the form: where a, b, and c are real numbers and a 0. The domain of a quadratic.
REVIEW y = ax2 + bx + c is a parabola.  If a > 0, the parabola is oriented upward and the vertex is the minimum point of the function.  If a < 0, the.
Section 3.3 Analyzing Graphs of Quadratic Functions Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
Graphing Quadratic Functions. Math Maintenance Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 3.
Graphing Quadratics. Finding the Vertex We know the line of symmetry always goes through the vertex. Thus, the line of symmetry gives us the x – coordinate.
Precalculus Chapter 2 Polynomial and Rational Functions.
MAT 150 Unit 2-1: Quadratic Functions; Parabolas.
Section 3.3 Analyzing Graphs of Quadratic Functions Copyright ©2013, 2009, 2006, 2005 Pearson Education, Inc.
F(x) = a(x - p) 2 + q 4.4B Chapter 4 Quadratic Functions.
Chapter 3 QUADRATIC FUNCTIONS
IB STUDIES Graphing Quadratic Functions
Graphing Quadratic and Higher Degree Polynomial Functions
Quadratic Equations Chapter 5.
2.1- Graphing Quadratic Functions
Dilrajkumar 06 X;a.
Math NS FUNCTIONS QUADRATIC.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Graphing Quadratic Functions
3.1 Quadratic Functions and Models
Graphing Quadratic Functions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Find the x-coordinate of the vertex
Graphing Quadratic Functions
Review: Simplify.
Warm-up: Sketch y = 3|x – 1| – 2
Chapter 8 Quadratic Functions.
Graphing Quadratic Functions
Some Common Functions and their Graphs – Quadratic Functions
Chapter 8 Quadratic Functions.
3.1 Quadratic Functions and Models
Graphing Quadratic Functions
Translations & Transformations
Bell Work Draw a smile Draw a frown Draw something symmetrical.
Graphing Quadratic Functions
Graphing Quadratic Functions
Analyzing Graphs of Quadratic Functions
Quadratic Functions and Equations Lesson 1: Graphing Quadratic Functions.
Presentation transcript:

Graphing Quadratic Functions Digital Lesson

2 Quadratic function Let a, b, and c be real numbers a  0. The function f (x) = ax 2 + bx + c is called a quadratic function. The graph of a quadratic function is a parabola. Every parabola is symmetrical about a line called the axis (of symmetry). The intersection point of the parabola and the axis is called the vertex of the parabola. x y axis f (x) = ax 2 + bx + c vertex

3 The leading coefficient of ax 2 + bx + c is a. When the leading coefficient is positive, the parabola opens upward and the vertex is a minimum. When the leading coefficient is negative, the parabola opens downward and the vertex is a maximum. x y f(x) = ax 2 + bx + c a > 0 opens upward vertex minimum x y f(x) = ax 2 + bx + c a < 0 opens downward vertex maximum

4 5 y x The simplest quadratic functions are of the form f (x) = ax 2 (a  0) These are most easily graphed by comparing them with the graph of y = x 2. Example: Compare the graphs of, and

5 Example: f(x) = (x –3) Example: Graph f (x) = (x – 3) and find the vertex and axis. f (x) = (x – 3) is the same shape as the graph of g (x) = (x – 3) 2 shifted upwards two units. g (x) = (x – 3) 2 is the same shape as y = x 2 shifted to the right three units. f (x) = (x – 3) g (x) = (x – 3) 2 y = x x y 4 4 vertex (3, 2)

6 x y Quadratic Function in Standard Form Example: Graph the parabola f (x) = 2x 2 + 4x – 1 and find the axis and vertex. f (x) = 2x 2 + 4x – 1 original equation f (x) = 2( x 2 + 2x) – 1 factor out 2 f (x) = 2( x 2 + 2x + 1) – 1 – 2 complete the square f (x) = 2( x + 1) 2 – 3 standard form a > 0  parabola opens upward like y = 2x 2. h = –1, k = –3  axis x = –1, vertex (–1, –3). x = –1 f (x) = 2x 2 + 4x – 1 The standard form for the equation of a quadratic function is: f (x) = a(x – h) 2 + k (a  0) The graph is a parabola opening upward if a  0 and opening downward if a  0. The axis is x = h, and the vertex is (h, k). (–1, –3)

7 x y 4 4 Vertex and x-Intercepts Example: Graph and find the vertex and x-intercepts of f (x) = –x 2 + 6x + 7. f (x) = – x 2 + 6x + 7 original equation f (x) = – ( x 2 – 6x) + 7 factor out –1 f (x) = – ( x 2 – 6x + 9) complete the square f (x) = – ( x – 3) standard form a < 0  parabola opens downward. h = 3, k = 16  axis x = 3, vertex (3, 16). Find the x-intercepts by solving –x 2 + 6x + 7 = 0. (–x + 7 )( x + 1) = 0 factor x = 7, x = –1 x-intercepts (7, 0), (–1, 0) x = 3 f(x) = –x 2 + 6x + 7 (7, 0)(–1, 0) (3, 16)

8 y x Example: Parabola Example: Find an equation for the parabola with vertex (2, –1) passing through the point (0, 1). f (x) = a(x – h) 2 + k standard form f (x) = a(x – 2) 2 + (–1)vertex (2, –1) = (h, k) y = f(x) (0, 1) (2, –1) Since (0, 1) is a point on the parabola: f (0) = a(0 – 2) 2 – 1 1 = 4a –1 and

9 Vertex of a Parabola Example: Find the vertex of the graph of f (x) = x 2 – 10x f (x) = x 2 – 10x + 22 original equation a = 1, b = –10, c = 22 The vertex of the graph of f (x) = ax 2 + bx + c (a  0) At the vertex, So, the vertex is (5, -3).

10 Example: Basketball Example: A basketball is thrown from the free throw line from a height of six feet. What is the maximum height of the ball if the path of the ball is: The path is a parabola opening downward. The maximum height occurs at the vertex. At the vertex, So, the vertex is (9, 15). The maximum height of the ball is 15 feet.

11 Example: Maximum Area Example: A fence is to be built to form a rectangular corral along the side of a barn 65 feet long. If 120 feet of fencing are available, what are the dimensions of the corral of maximum area? barn corral x x 120 – 2x Let x represent the width of the corral and 120 – 2x the length. Area = A(x) = (120 – 2x) x = –2x x The graph is a parabola and opens downward. The maximum occurs at the vertex where a = –2 and b = – 2x = 120 – 2(30) = 60 The maximum area occurs when the width is 30 feet and the length is 60 feet.