SHIELD-HIT(INR RAS,KI,2001)

Slides:



Advertisements
Similar presentations
Photon Collimation For The ILC Positron Target Lei Zang The University of Liverpool Cockcroft Institute 24 th March 2007.
Advertisements

Cheikh Anta Diop University, Dakar (SENEGAL)
Stefan Roesler SC-RP/CERN on behalf of the CERN-SLAC RP Collaboration
The Vin č a Institute of Nuclear Sciences, Belgrade, Serbia * Universita degli studi di Bologna, DIENCA, Italia Radovan D. Ili}, Milan Pe{i}, Radojko Pavlovi}
1 Activation problems S.Agosteo (1), M.Magistris (1,2), Th.Otto (2), M.Silari (2) (1) Politecnico di Milano; (2) CERN.
Adam Para, Fermilab, March 23, Methodology  Use Hadr01 example  In G4SteppingVerbose::StepInfo() select all the steps with inelastic processes.
Particle interactions and detectors
Summary TG-10 MC & Background
ATLAS LHCf Detector 140m away from the interaction point LHCf: calibration of hadron interaction models for high energy cosmic-ray physics at the LHC energy.
Modane, 12/01/2005 Vitaly Kudryavtsev - JRA1 meeting 1 Background simulations: testing Monte Carlo codes V. A. Kudryavtsev Department of Physics and Astronomy.
etc… Analysing samples with complex geometries Particles Inclusions
The method of extracting excitation energy for the ISiS data is described in T.Lefort et al, Phys. Rev. C, 64, (2001). Figure (mader-BUU) : Projectile.
1 Induced radioactivity in the target station and in the decay tunnel from a 4 MW proton beam S.Agosteo (1), M.Magistris (1,2), Th.Otto (2), M.Silari (2)
1 JASMIN Activation Experiments (T-972/993/994) Yoshimi Kasugai on behalf of JASMIN Activation team JASMIN Activation team Y. Kasugai, K. Oishi, H. Matsumura,
1CEA/DEN/CAD/DTN/STPA/LPC Kick off meeting 0ct TW6-TSL-002 : ORE TBM OCCUPATIONAL RADIATION EXPOSURE.
Modelling of Electron Air Showers and Cherenkov Light A.Mishev J. Stamenov Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences.
Antiprotons of interstellar origin at balloon altitudes: Flux simulations U. B. Jayanthi, K. C. Talavera Instituto Nacional de Pesquisas Espaciais (INPE),
NEUTRON OPTICS & SHIELDING GROUP NATALIIA CHERKASHYNA TAP MEETING 23 RD OF JANUARY, 2014 Latest Developments on Shielding and Backgrounds.
Studies of Muon-Induced Radioactivity at NuMI David Boehnlein Fermi National Accelerator Laboratory (on behalf of the JASMIN Collaboration) NuFact09 –
Inter-comparison of Medium-Energy Neutron Attenuation in Iron and Concrete (8) H. Hirayama and Attenuation Length Sub-Working Group in Japan.
Hadronic schower models in geant4 The frameworks J.P. Wellisch, CERN/EP, CHEP J.P. Wellisch, CERN/EP, CHEP 2000.
Simulations on “Energy plus Transmutation” setup, 1.5 GeV Mitja Majerle
Monte Carlo methods in ADS experiments Study for state exam 2008 Mitja Majerle “Phasotron” and “Energy Plus Transmutation” setups (schematic drawings)
Modeling of the set-up for the Project experimental tasks and study of radiation hazard due to lost beam particles in the GSI Future Facilities INTAS-3588.
Authorization and Inspection of Cyclotron Facilities Design, Layout and Shielding.
Experimental Studies of Spatial Distributions of Neutrons Produced by Set-ups with Thick Lead Target Irradiated by Relativistic Protons Vladimír Wagner.
The energy deposition profile for 238U ions with energies 500 and 950 MeV/u in iron and copper. A.A.Golubev 1, A.V.Kantsyrev 1, V.E.Luckjashin 1, A.D.Fertman.
Cristian Bungau ThorEA Meeting - Oxford - April 2010.
MaGe framework for Monte Carlo simulations MaGe is a Geant4-based Monte Carlo simulation package dedicated to experiments searching for 0 2  decay of.
Towards comparisons between TFluka and TGeant3 ( within CbmRoot Framework) Denis Bertini (IT-GSI) Antonin Maire (IPHC Strasbourg)
SIGNAL AND BACKGROUND SIMULATION AT THE RECOMBINATION CHAMBER Vadim TALANOV CERN and IHEP, Protvino Joint LHC Machine-Experiments Workshop on Very Forward.
Recent CHIPS implementations Mikhail Kosov, 12 th Geant4 Workshop (GB, Sept. 2007)
Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP , A. Borella1 Monte Carlo methods.
1 Constraining ME Flux Using ν + e Elastic Scattering Wenting Tan Hampton University Jaewon Park University of Rochester.
ESTRO, Geneva 2003 The importance of nuclear interactions for dose calculations in proton therapy M.Soukup 1, M.Fippel 2, F. Nuesslin 2 1 Department of.
Luciano Pandola, INFN Gran Sasso Luciano Pandola INFN Gran Sasso Genova, July 18 th, 2005 Geant4 and the underground physics community.
Marina Golubeva, Alexander Ivashkin Institute for Nuclear Research RAS, Moscow AGeV simulations with Geant4 and Shield Geant4 with Dpmjet-2.5 interface.
OUTGOING NEUTRONS IN CALET CALET AIMS AT DETECTING UHE CR ELECTRONS HIGH REJECTION FACTOR FOR PROTONS/NUCLEI NEEDED POSSIBLE IMPROVEMENT RESPECT ‘STANDARD’
Preliminary validation of computational procedures for a New Atmospheric Ionizing Radiation (AIR) model John M. Clem, Giovanni De Angelis, Paul Goldhagen.
Muon-induced neutron background at Boulby mine Vitaly A. Kudryavtsev University of Sheffield UKDMC meeting, ICSTM, London, 27 June 2002.
Spallation Eric Pitcher Head of Target Division February 19, 2016.
1 Activation by Medium Energy Beams V. Chetvertkova, E. Mustafin, I. Strasik (GSI, B eschleunigerphysik), L. Latysheva, N. Sobolevskiy (INR RAS), U. Ratzinger.
Radiation Protection At Accelerator Facilities Matthew Quinn, PhD Radiation Physicist, Fermilab ESH&Q Section American Nuclear Society Student Section.
Improvements of microscopic transport models stimulated by spallation data for incident energies from 113 to MeV Umm Al-Qura University and King.
Calculation of efficiency for a high-resolution gamma-ray spectrometer used for environmental radioactivity measurements Ileana Radulescu, Marian Romeo.
An analytically solvable model of a nuclear cascade in the atmosphere M. G. Kostyuk BNO INR RAS Using sufficiently accurate uniform (that is, suitable.
INSTITUTE OF NUCLEAR SCIENCE AND TECHNOLOGY
Heating and radiological
Induced-activity experiment:
GERDA Collaboration Meeting,
Simulation for DayaBay Detectors
Hadronic Shower Structure in WHCAL Prototype
Neutron and 9Li Background Calculations
GAMOS tutorial Shielding Exercises
Summary of hadronic tests and benchmarks in ALICE
PHYS 3446 – Lecture #14 Energy Deposition in Media Particle Detection
Lecture 5 – Improved Monte Carlo methods in finance: lab
JOINT INSTITUTE FOR NUCLEAR RESEARCH
MUPAGE: A fast muon generator
Specific Charge of a Particle
How to stop a, b, g-rays and neutrons?
Effect of Friction on Neutron Emission in Fission of Heavy nuclei
Hadronic Interaction Model Analysis Air Shower Development
Radiation Shielding Val Kostroun REU Presentation, June 1, 2009
The Hadrontherapy Geant4 advanced example
G4GeneralParticleSource Class:
EEE telescope simulation
Performed experiments Nuclotron – set up ENERGY PLUS TRANSMUTATION
Composite Weak Bosons LHC.
PHYS 3446 – Lecture #14 Energy Deposition in Media Particle Detection
Presentation transcript:

SHIELD-HIT(INR RAS,KI,2001) (Energies at 1 TeV/A are available) SHIELDHI(INR RAS,1997) (Interactions of nucleons, Pi, K, anti nucleons, muons, all (A,Z) nuclei. All isotope and chemical compounds, complex geometry) SHIELD(INR RAS,1989) (Kernel had been totally overwritten. Growth of functionality) SHIELD(JINR,1972) (Nucleons-Pi mesons cascades evolution up to energy 20 – 30 GeV )

(Combinatorial geometry) Improved CG module (Combinatorial geometry) Geometry LOENT (ABBN 28 constants) Low energy neutrons transportation MSDM generator (Multy Stage Dynamical Model. Exclusive approach. ) Inelastic interactions

Geometry file for GERDA transport container simulation RCC 1 0.0 0.0 0.0 0.0 0.0 126.5 70.0 RCC 2 0.0 0.0 15.0 0.0 0.0 40.0 27.0 RCC 3 0.0 0.0 16.0 0.0 0.0 27.0 21.0 ELL 4 0.0 0.0 0.0 150.0 0.0 0.0 0.0 150.0 0.0 0.0 0.0 150.0 RCC 5 0.0 0.0 -520.0 0.0 0.0 400.0 800.0 RCC 6 0.0 0.0 -120.0 0.0 0.0 120.0 RCC 7 0.0 0.0 -520.0 0.0 0.0 671.0 RCC 8 0.0 0.0 -600.0 0.0 0.0 1000.0 2000.0 END FER +1 -2 CAV +2 -3 GER +3 SFE +4 -5 -6 -1 GRD +5 GAP +6 VAC +7 -5 -6 -4 OUT +8 -7 1 2 3 4 5 6 7 8 1000 1000 1 1000 2 1000 1000 0

Zone numbers are shown in parenthesis Simulation of Isotope Production Rate inside the GERDA Transport Container Using the SHIELD Monte Carlo Hadron Transport Code N. Sobolevsky, A. Denisov, INR RAS,2004-2005 Container: R1=70 cm, H1=126.5 cm Bottom depth 15 cm Cavity: R2=27 cm, H2=40 cm Ge-shipment: R3=21 cm, H3=27 cm OUT (8) Air (7) Container Fe (1) Cavity (2) Ge (3) Air gap (6) Normalizing sphere (4), R=150 cm 120 cm Ground (5), Depth=4 m Zone numbers are shown in parenthesis

Input file msdm_in.dat for MSDM hA-generator of the SHIELD code used to calculate excitation functions. IXFIRS,FORMAT(2I12): 97382645 0 JPART, FORMAT(I12): 1 NUCLID, FORMAT(I12): 32 NSTAT, FORMAT(I12): 10000 LANTI, FORMAT(I12): 0 ! 0 - Lab. frame; 1 - AntiLab. frame LSTAR, FORMAT(I12): 1 ! 0 - no print; 1/2 - short/total print LCASC, FORMAT(I12): 0 ! 0 - AGT; 1 - CASCAD DATA FOR HISTOGRAMMING EXCITATION FUCNTIONS EMIND,FORMAT(F12.3): 20.0 EMAXD,FORMAT(F12.3): 100.0 ESTPD,FORMAT(F12.3): 5.0 ----------- 20X ------------> < DATA ><-------- Comments ----------------->

Example of “medium.dat” file. NUMMED= 4 MEDIUM NO. 1 (75%W+25%H2O vol.) MEDTYP=4 NELEM=3 RHO=14.725 1 NUCLID= 74 CON1=0.47397E-04 RHO1=14.475 2 NUCLID= 1 CON2=0.16722E-04 RHO2= 0.028 3 NUCLID= 8 CON3=0.83611E-05 RHO3= 0.222 MEDIUM NO. 2 (H2O - water) MEDTYP=2 NELEM=2 RHO= 1.000 1 NUCLID= 1 IND1=2.0 2 NUCLID= 8 IND2=1.0 MEDIUM NO. 3 (90%Fe+10%H2O vol.) MEDTYP=4 NELEM=3 RHO= 7.183 1 NUCLID= 26 CON1=0.76351E-04 RHO1= 7.083 2 NUCLID= 1 CON2=0.66888E-05 RHO2= 0.011 3 NUCLID= 8 CON3=0.33444E-05 RHO3= 0.089 MEDIUM NO. 4 (Pu240) MEDTYP=1 1 NUCLID=107

Comparing with Bugaev - Bezrukov MaGe Energy transfer spectrum from muon to hadron shower Comparing with Bugaev - Bezrukov formula MaGe SHIELD Simulation of simple geometry for hadron transportation Comparing results and analyzing discrepancies