C H A P T E R 17 Waves and Sound

Slides:



Advertisements
Similar presentations
Request Dispatching for Cheap Energy Prices in Cloud Data Centers
Advertisements

SpringerLink Training Kit
Luminosity measurements at Hadron Colliders
From Word Embeddings To Document Distances
Choosing a Dental Plan Student Name
Virtual Environments and Computer Graphics
Chương 1: CÁC PHƯƠNG THỨC GIAO DỊCH TRÊN THỊ TRƯỜNG THẾ GIỚI
THỰC TIỄN KINH DOANH TRONG CỘNG ĐỒNG KINH TẾ ASEAN –
D. Phát triển thương hiệu
NHỮNG VẤN ĐỀ NỔI BẬT CỦA NỀN KINH TẾ VIỆT NAM GIAI ĐOẠN
Điều trị chống huyết khối trong tai biến mạch máu não
BÖnh Parkinson PGS.TS.BS NGUYỄN TRỌNG HƯNG BỆNH VIỆN LÃO KHOA TRUNG ƯƠNG TRƯỜNG ĐẠI HỌC Y HÀ NỘI Bác Ninh 2013.
Nasal Cannula X particulate mask
Evolving Architecture for Beyond the Standard Model
HF NOISE FILTERS PERFORMANCE
Electronics for Pedestrians – Passive Components –
Parameterization of Tabulated BRDFs Ian Mallett (me), Cem Yuksel
L-Systems and Affine Transformations
CMSC423: Bioinformatic Algorithms, Databases and Tools
Some aspect concerning the LMDZ dynamical core and its use
Bayesian Confidence Limits and Intervals
实习总结 (Internship Summary)
Current State of Japanese Economy under Negative Interest Rate and Proposed Remedies Naoyuki Yoshino Dean Asian Development Bank Institute Professor Emeritus,
Front End Electronics for SOI Monolithic Pixel Sensor
Face Recognition Monday, February 1, 2016.
Solving Rubik's Cube By: Etai Nativ.
CS284 Paper Presentation Arpad Kovacs
انتقال حرارت 2 خانم خسرویار.
Summer Student Program First results
Theoretical Results on Neutrinos
HERMESでのHard Exclusive生成過程による 核子内クォーク全角運動量についての研究
Wavelet Coherence & Cross-Wavelet Transform
yaSpMV: Yet Another SpMV Framework on GPUs
Creating Synthetic Microdata for Higher Educational Use in Japan: Reproduction of Distribution Type based on the Descriptive Statistics Kiyomi Shirakawa.
MOCLA02 Design of a Compact L-­band Transverse Deflecting Cavity with Arbitrary Polarizations for the SACLA Injector Sep. 14th, 2015 H. Maesaka, T. Asaka,
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Fuel cell development program for electric vehicle
Overview of TST-2 Experiment
Optomechanics with atoms
داده کاوی سئوالات نمونه
Inter-system biases estimation in multi-GNSS relative positioning with GPS and Galileo Cecile Deprez and Rene Warnant University of Liege, Belgium  
ლექცია 4 - ფული და ინფლაცია
10. predavanje Novac i financijski sustav
Wissenschaftliche Aussprache zur Dissertation
FLUORECENCE MICROSCOPY SUPERRESOLUTION BLINK MICROSCOPY ON THE BASIS OF ENGINEERED DARK STATES* *Christian Steinhauer, Carsten Forthmann, Jan Vogelsang,
Particle acceleration during the gamma-ray flares of the Crab Nebular
Interpretations of the Derivative Gottfried Wilhelm Leibniz
Advisor: Chiuyuan Chen Student: Shao-Chun Lin
Widow Rockfish Assessment
SiW-ECAL Beam Test 2015 Kick-Off meeting
On Robust Neighbor Discovery in Mobile Wireless Networks
Chapter 6 并发:死锁和饥饿 Operating Systems: Internals and Design Principles
You NEED your book!!! Frequency Distribution
Y V =0 a V =V0 x b b V =0 z
Fairness-oriented Scheduling Support for Multicore Systems
Climate-Energy-Policy Interaction
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Ch48 Statistics by Chtan FYHSKulai
The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities.
Measure Twice and Cut Once: Robust Dynamic Voltage Scaling for FPGAs
Online Learning: An Introduction
Factor Based Index of Systemic Stress (FISS)
What is Chemistry? Chemistry is: the study of matter & the changes it undergoes Composition Structure Properties Energy changes.
THE BERRY PHASE OF A BOGOLIUBOV QUASIPARTICLE IN AN ABRIKOSOV VORTEX*
Quantum-classical transition in optical twin beams and experimental applications to quantum metrology Ivano Ruo-Berchera Frascati.
The Toroidal Sporadic Source: Understanding Temporal Variations
FW 3.4: More Circle Practice
ارائه یک روش حل مبتنی بر استراتژی های تکاملی گروه بندی برای حل مسئله بسته بندی اقلام در ظروف
Decision Procedures Christoph M. Wintersteiger 9/11/2017 3:14 PM
Limits on Anomalous WWγ and WWZ Couplings from DØ
Presentation transcript:

C H A P T E R 17 Waves and Sound F/A 18 fighter jet emerges from a cloud caused when it breaks through the sound barrier. (Boeing) Speed of sound = 343 m/s = 768 MPH, at 200C. Speed of fighter jet = 1360 MPH + 

The Nature of Waves Wave is a traveling disturbance. Wave carries energy from place to place. There are two basic types of waves: Transverse waves Longitudinal Waves The disturbance is perpendicular to the direction of travel of the wave. Examples: Light wave, waves on a guitar string. The disturbance is parallel to the direction of travel of the wave. Example: Sound wave in air.

Water Waves Water waves are partly transverse and longitudinal. Dominoe Topling: Human wave at a sport stadium:

Periodic Waves: waves that repeat The amplitude, A is the maximum disturbance. The wavelength, λ  is the horizontal length of one cycle of the wave. The period, T is the time required for one complete up/down cycle of the wave. The frequency, f is the number of waves per unit time, f=1/T. Wave Speed =

The Speed of a Wave on a String T = Tension provided by the hanging mass 𝜇= 𝑚𝑎𝑠𝑠 𝑙𝑒𝑛𝑔𝑡ℎ , of the string.

The Nature of Sound Longitudinal Sound Waves Sound in air is a longitudinal wave that is created by a vibrating object, such as a guitar string, the human vocal cords, or the diaphragm of a loudspeaker. Sound cannot propagate in a vacuum. Bell in a vacuum

How do we hear?

Wave Picture

The Frequency of a Sound Wave Audible Range: 20 Hz ----- 20,000 Hz. Infrasonic waves: Sound waves with frequencies < 20 Hz. Rhinoceroses use infrasonic frequencies as low as 5 Hz to call one another Ultrasonic waves: Sound waves with frequencies > 20,000 Hz. Bats use ultrasonic frequencies up to 100 kHz for locating their food sources and navigating.

Objective and Subjective properties of sound Objective properties can be measured, used in physics. Subjective properties are subjective to the person, used in music. Objective property Subjective quality Frequency Pitch Intensity Loudness Waveform Tymbre or Quality

Speed of Sound in an ideal gas γ = 1.40 (ratio of specific heats for air) m = 4.8 x 10-26 kg (average molecular mass of air) k = 1.38 x 10-23 J/K (Boltzmann constant) T= temperature in Kelvin Gases  Speed of Sound (m/s)     Air (0 °C)    331   Air (20 °C)    343   Carbon dioxide (0 °C)    259   Oxygen (0 °C)    316   Helium (0 °C)    965  Liquids  Speed of Sound (m/s)     Chloroform (20 °C)   1004   Ethyl alcohol (20 °C)   1162   Mercury (20 °C)   1450   Fresh water (20 °C)   1482   Seawater (20 °C)   1522  Solids  Speed of Sound (m/s)     Copper   5010   Glass (Pyrex)   5640   Lead   1960   Steel   5960  Inhaling Helium and Sulfur Hexafluoride

Sound Intensity The sound intensity I is defined as the sound power P that passes perpendicularly through a surface divided by the area A of that surface: The unit of sound intensity is power per unit area, or W/m2.

Human Ear and Sensitivity Audible frequency range: 20 Hz – 20,000 Hz Audible intensity range: 10–12 W/m2 - 10 w/m2 10–12 W/m2 = Threshold of hearing 10 W/m2 = Threshold of pain

Decibels The decibel (dB) is a measurement unit used when comparing two sound intensities. The intensity level b  (expressed in decibels) relative to the threshold of hearing, Io is defined as follows:

Typical Sound Intensities and Intensity Levels Relative to the Threshold of Hearing   Intensity I (W/m2) Intensity Level b (dB) Threshold of hearing 1.0 × 10-12 Rustling leaves 1.0 × 10-11 10 Whisper 1.0 × 10-10 20 Normal conversation (1 meter) 3.2 × 10-6 65 Inside car in city traffic 1.0 × 10-4 80 Car without muffler 1.0 × 10-2 100 Live rock concert 1.0 120 Threshold of pain 130

The Doppler Effect The Doppler effect is the change in frequency or pitch of a wave for an observer moving relative to its source.

Source Moving Towards Observer

Source Moving Towards Observer

Source Moving Towards Observer

Source Moving Towards Observer

Source Moving –vs ….when the source moves towards the observer. +vs .… when the source moves away from the observer.

Moving Observer

Moving Observer

Moving Observer In the above equation +vo is used when the observer moves towards the source and –vo is used when the observer moves away from the source.

Doppler Effect General Case +vo is used when the observer moves towards the source, –vo is used when the observer moves away from the source, –vs is used when the source moves towards the observer, and +vs is used when the source moves away from the observer.

Application of Doppler Effect Nexrad: Next Generation Weather Radar

Applications of Sound in Medicine Ultrasonic Scanner The cavitron ultrasonic surgical aspirator (CUSA) Bloodless surgery: High-intensity focused ultrasound (HIFU) The Doppler flow meter

Ultrasonic Scanner

The cavitron ultrasonic surgical aspirator (CUSA) Neurosurgeons use a cavitron ultrasonic surgical aspirator (CUSA) to “cut out” brain tumors without adversely affecting the surrounding healthy tissue.

Bloodless surgery High-intensity focused ultrasound (HIFU) Another application of ultrasound is in a new type of bloodless surgery, which can eliminate abnormal cells, such as those in benign hyperplasia of the prostate gland. This technique is known as HIFU (high-intensity focused ultrasound). It is analogous to focusing the sun’s electromagnetic waves by using a magnifying glass and producing a small region where the energy carried by the waves can cause localized heating. Ultrasonic waves can be used in a similar fashion. The waves enter directly through the skin and come into focus inside the body over a region that is sufficiently well defined to be surgically useful. Within this region the energy of the waves causes localized heating, leading to a temperature of about 56 °C (normal body temperature is 37 °C), which is sufficient to kill abnormal cells. The killed cells are eventually removed by the body’s natural processes.

Doppler Flow Meter A Doppler flow meter measures the speed of red blood cells.