Ch30.1–4 Induction and Inductance I

Slides:



Advertisements
Similar presentations
Faraday Generators/ Motors Induced Current Lenz’s Law/ Changing B
Advertisements

Electromagnetic Induction
Physics 1304: Lecture 13, Pg 1 Faraday’s Law and Lenz’s Law ~ B(t) i.
ConcepTest 23.2a Moving Bar Magnet I
Lenz’s Law AP Physics C Montwood High School R. Casao.
Cutnell/Johnson Physics 8th edition
Physics 1502: Lecture 18 Today’s Agenda Announcements: –Midterm 1 distributed available Homework 05 due FridayHomework 05 due Friday Magnetism.
Magnetism July 2, Magnets and Magnetic Fields  Magnets cause space to be modified in their vicinity, forming a “ magnetic field ”.  The magnetic.
Lecture 32: WED 01 APR Ch30.1–4 Induction and Inductance I Induction and Inductance I Physics 2113 Jonathan Dowling Fender Stratocaster Solenoid Pickup.
Two questions: (1) How to find the force, F on the electric charge, Q excreted by the field E and/or B? (2) How fields E and/or B can be created? Gauss’s.
Announcements  Homework for tomorrow… Ch. 33: CQ 4, Probs. 10, 12, & 14 CQ1: CCW CQ2: push against resistive force 33.2: 0.10 T, out of page 33.3: 2.3.
Physics 121: Electricity & Magnetism – Lecture 11 Induction I Dale E. Gary Wenda Cao NJIT Physics Department.
Electromagnetic Induction Objective: TSW understand and apply the concept of magnetic flux in order to explain how induced emfs are created and calculate.
Physics 2102 Spring 2007 Lecture 17 Ch30: Induction and Inductance I Induction and Inductance I Physics 2102 Spring 2007 Jonathan Dowling.
Chapter 21 Electromagnetic Induction and Faraday’s Law.
Induction: Faraday’s Law
Electromagnetic Induction
dfdafd Mag. Field applies force to moving charge Moving Charge makes magnetic field. Current loops are mag. dipoles Moving or Changing Mag. Field makes.
My Chapter 20 Lecture Outline.
Induced Voltages and Inductance
Chapter 20 Electromagnetic Induction. Electricity and magnetism Generators, motors, and transformers.
Generators & Motors Textbook Sections 23-6 – Physics.
Tuesday April 19, PHYS , Dr. Andrew Brandt PHYS 1444 – Section 02 Lecture #18 Tuesday April 19, 2011 Dr. Andrew Brandt Chapter 29 Lenz Law.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Magnets and the magnetic field Electric currents create magnetic fields.
Copyright © 2009 Pearson Education, Inc. Chapter 29 Electromagnetic Induction and Faraday’s Law.
CH Review Changing the magnetic flux in a coil induces an emf around the coil. (As long as the coil is connected in a complete circuit, a current.
Halliday/Resnick/Walker Fundamentals of Physics
Magnetic Induction 1Physics is Life. Objectives To learn how magnetic fields can produce currents in conductors To understand how this effect is applied.
Chapter 29:Electromagnetic Induction and Faraday’s Law
Finally! Flux! Electromagnetic Induction. Objectives.
Lecture 30: WED 05 NOV Induction and Inductance II Physics 2113 Jonathan Dowling Fender Stratocaster Solenoid Pickup.
Problem 3 An infinitely long wire has 5 amps flowing in it. A rectangular loop of wire, oriented as shown in the plane of the paper, has 4 amps in it.
Two questions: (1) How to find the force, F on the electric charge, Q excreted by the field E and/or B? (2) How fields E and/or B can be created?
INDUCTION PROBLEM 1 A rotating rectangular coil is 12 cm wide and 18 cm long, and is wound with 150 turns of wire with resistivity = 0.5 ohms/m. The coil.
Magnetic Flux.
EMF Induced in a Moving Conductor (“Motional EMF”)
Induction and Inductance III
Flux Faraday’s law Lenz’s law Examples Generator
Induced Voltages and Inductance
Announcements grade spreadsheets with exam 2 scores will be posted today on the Physics 2135 web site you need your PIN to find your grade preliminary.
Warm-up Why do loops of wire in a motor rotate?
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Induction and Inductance I
Direction of Induction
Announcements Homework for tomorrow… Ch. 33: CQs 4, Probs. 10, 12, & CQ1: CCW CQ2: push against resistive force 33.2: 0.10 T, out of.
General Physics (PHY 2140) Lecture 15 Electricity and Magnetism
Electricity from Magnetism

Electromagnetic Induction
General Review Electrostatics Magnetostatics Electrodynamics
Changing Magnetic Fields create Electric Fields
From last time… Faraday: Lenz: induced currents oppose change in flux
Electricity and Magnetism
Phys102 Lecture 18/19 Electromagnetic Induction and Faraday’s Law
Chapter 20 Section 1 Section 1 Electricity from Magnetism.
Ch30.1–4 Induction and Inductance I
ConcepTest 30.3a Moving Wire Loop I
Electricity and Magnetism
Professor Stephen Thornton October 15, 2012
Magnetic Flux () is related to the number of magnetic field lines passing through a surface B N S B Magnetic Flux =  = B A cos  SI unit = 1 Weber.
Ch30.1–4 Induction and Inductance
Two questions: (1) How to find the force, F on the electric charge, Q excreted by the field E and/or B? (2) How fields E and/or B can be created?
ConcepTest Clicker Questions College Physics, 7th Edition
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Faraday’s Law.
Electricity and Magnetism
Electromagnetic Induction and Faraday’s Law
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
ELECTROMAGNETISM.
Presentation transcript:

Ch30.1–4 Induction and Inductance I Physics 2113 Jonathan Dowling Lecture 29: MON 03 NOV Ch30.1–4 Induction and Inductance I Fender Stratocaster Solenoid Pickup

Magnetic Circuit Breaker As the normal operating or "rated" current flows through the sensing coil, a magnetic field is created around that coil. When the current flow increases, the strength of the magnetic field increases, drawing the spring-biased, movable magnetic core toward the pole piece. As the core moves inward, the efficiency of the magnetic circuit is increased, creating an even greater electromagnetic force. When the core is fully "in", maximum electromagnetic force is attained. The armature is attracted to the pole piece, unlatching a trip mechanism thereby opening the contacts.

I n a s e r i o f x p m t , M c h l F d y E g J H U . S w b u ' T h e c i r u t s o w n f g a l p d v m ( k " ) . I b y A c u r e n t a p s o l y i f h v m b w g d . 1 F a s t e r m o i n u l g c . 2 I f 3 . w e r v s t h d i c o n m p l a y g , u T h e c u r n t g a d i s k o w " ; m f p l .

Changing B-Field Induces a Current in a Wire Loop

No Current When Magnet Stops Note Current Changes Sign With Direction No Current When Magnet Stops

loop 1 loop 2

Loop Two is Connected To A Light Bulb. The Current in Loop One Produces a Rapidly Changing Magnetic Field in Loop Two That Induces a Current in Loop Two — Lighting the Bulb! Loop One Has a 60 Hz Alternating Current

Faraday’s Law: What? The Flux! A time varying magnetic FLUX creates an induced EMF Definition of magnetic flux is similar to definition of electric flux. Units of Magnetic Flux: Weber! B dA Take note of the MINUS sign!! The induced EMF acts in such a way that it OPPOSES the change in magnetic flux (“Lenz’s Law”).

Lenz’s Law The Loop Current Produces a B Field that Opposes the CHANGE in the bar magnet field. Upper Drawing: B Field from Magnet is INCREASING so Loop Current is Clockwise and Produces an Opposing B Field that Tries to CANCEL the INCREASING Magnet Field Lower Drawing: B Field from Magnet is DECREASING so Loop Current is Counterclockwise and Tries to BOOST the Decreasing Magnet Field.

30. 4. 1. Consider the situation shown 30.4.1. Consider the situation shown. A triangular, aluminum loop is slowly moving to the right. Eventually, it will enter and pass through the uniform magnetic field region represented by the tails of arrows directed away from you. Initially, there is no current in the loop. When the loop is entering the magnetic field, what will be the direction of any induced current present in the loop? a) clockwise b) counterclockwise c) No current is induced.

30. 4. 1. Consider the situation shown 30.4.1. Consider the situation shown. A triangular, aluminum loop is slowly moving to the right. Eventually, it will enter and pass through the uniform magnetic field region represented by the tails of arrows directed away from you. Initially, there is no current in the loop. When the loop is entering the magnetic field, what will be the direction of any induced current present in the loop? a) clockwise b) counterclockwise c) No current is induced.

30. 4. 2. Consider the situation shown 30.4.2. Consider the situation shown. A triangular, aluminum loop is slowly moving to the right. Eventually, it will enter and pass through the uniform magnetic field region represented by the tails of arrows directed away from you. Initially, there is no current in the loop. When the loop is exiting the magnetic field, what will be the direction of any induced current present in the loop? a) clockwise b) counterclockwise c) No current is induced.

30. 4. 2. Consider the situation shown 30.4.2. Consider the situation shown. A triangular, aluminum loop is slowly moving to the right. Eventually, it will enter and pass through the uniform magnetic field region represented by the tails of arrows directed away from you. Initially, there is no current in the loop. When the loop is exiting the magnetic field, what will be the direction of any induced current present in the loop? a) clockwise b) counterclockwise c) No current is induced.

30.4.3. A rigid, circular metal loop begins at rest in a uniform magnetic field directed away from you as shown. The loop is then pulled through the field toward the right, but does not exit the field. What is the direction of any induced current within the loop? a) clockwise b) counterclockwise c) No current is induced.

30.4.3. A rigid, circular metal loop begins at rest in a uniform magnetic field directed away from you as shown. The loop is then pulled through the field toward the right, but does not exit the field. What is the direction of any induced current within the loop? a) clockwise b) counterclockwise c) No current is induced.

Example B 300 60° A closed loop of wire encloses an area of A = 1 m2 in which in a uniform magnetic field exists at 300 to the PLANE of the loop. The magnetic field is DECREASING at a rate of dB/dt = 1T/s. The resistance of the wire is 10 Ω. What is the induced current? Is it …clockwise or …counterclockwise?

Example 3 loops are shown. B B = 0 everywhere except in the circular region I where B is uniform, pointing out of the page and is increasing at a steady rate. Rank the 3 loops in order of increasing induced EMF. (a) III < II < I ? (b) III < II = I ? (c) III = II = I ? I II III B • III encloses no flux so EMF=0 • I and II enclose same flux so EMF same. Are Currents in Loops I & II Clockwise or Counterclockwise?

30.4.4. A coil of wire that forms a complete loop is moving with a constant speed v toward a very long, current carrying wire, only a portion of which is shown. What affect, if any, does the current carrying wire have on the coil of wire? a) Since the magnetic field increases as the coil approaches the wire, a current is induced in the coil. b) The rectangle will be distorted as it is pulled in the direction of the current in the wire. c) Close to the wire, a magnetic force acts on the loop that accelerates the loop away from the wire. d) Since the magnetic field around the wire is not changing, there is no effect on the coil. e) Since the coil and the wire are not touching, there is no effect.

30.4.4. A coil of wire that forms a complete loop is moving with a constant speed v toward a very long, current carrying wire, only a portion of which is shown. What affect, if any, does the current carrying wire have on the coil of wire? a) Since the magnetic field increases as the coil approaches the wire, a current is induced in the coil. b) The rectangle will be distorted as it is pulled in the direction of the current in the wire. c) Close to the wire, a magnetic force acts on the loop that accelerates the loop away from the wire. d) Since the magnetic field around the wire is not changing, there is no effect on the coil. e) Since the coil and the wire are not touching, there is no effect.

Example i An infinitely long wire carries a constant current i as shown A square loop of side L is moving towards the wire with a constant velocity v. What is the EMF induced in the loop when it is a distance R from the loop? R r=R+x x L dR/dt=v L Choose a “strip” of width dx located as shown. Flux thru this “strip”

Example i R B x dR/dt=v L What is the DIRECTION of the induced current? Magnetic field due to wire points INTO page and gets stronger as you get closer to wire So, flux into page is INCREASING Hence, current induced must be counter clockwise to oppose this increase in flux = CCW

30.3.2. A circular ring is rotated clockwise at a constant rate for an extended period of time using the apparatus shown. Which of the graphs below correctly shows the magnetic flux through the ring as a function of time? Note: At time t = 0 s, the plane of the ring is perpendicular to the direction of the magnetic field.

30.3.2. A circular ring is rotated clockwise at a constant rate for an extended period of time using the apparatus shown. Which of the graphs below correctly shows the magnetic flux through the ring as a function of time? Note: At time t = 0 s, the plane of the ring is perpendicular to the direction of the magnetic field.

Example : The Generator A square loop of wire of side L is rotated at a uniform frequency f in the presence of a uniform magnetic field B as shown. Describe the EMF induced in the loop. L B B 