Physics 2102 Gabriela González Physics 2102 Capacitors.

Slides:



Advertisements
Similar presentations
Electric Potential Energy & Electric Potential Unit 8
Advertisements

Capacitance October 6, 2012.
Electric Potential Energy and the Electric Potential
Capacitors.
Physics 2113 Lecture: 06 WED 01 OCT
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Chapter 23: Electrostatic Energy and Capacitance
Physics 2102 Capacitors Gabriela González. Summary (last class) Any two charged conductors form a capacitor. Capacitance : C= Q/V Simple Capacitors: Parallel.
1/29/07184 Lecture 121 PHY 184 Spring 2007 Lecture 12 Title: Capacitor calculations.
Chapter 25. Capacitance What is Physics? Capacitance
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Capacitance and Dielectrics
Lecture 4 Capacitance and Capacitors Chapter 16.6  Outline Definition of Capacitance Simple Capacitors Combinations of Capacitors Capacitors with.
Capacitance Energy & Dielectrics
Capacitance Definition Parallel Plate Capacitors Cylindrical Capacitor
When a potential difference of 150 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge density of 30.0 nC/cm2.
(Capacitance and capacitors)
A sphere of radius A has a charge Q uniformly spread throughout its volume. Find the difference in the electric potential, in other words, the voltage.
Physics 2102 Lecture: 11 FRI 06 FEB Capacitance I Physics 2102 Jonathan Dowling 25.1–3.
Physics 1402: Lecture 7 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, solutions.
Physics 2113 Lecture: 16 MON 23 FEB
Capacitance and Dielectrics
Chapter 26 Capacitance and Dielectrics. Concept Question 1.
1 Lecture 5 Capacitance Ch. 25 Cartoon - Capacitance definition and examples. Opening Demo - Discharge a capacitor Warm-up problem Physlet Topics Capacitance.
1 TOPIC 5 Capacitors and Dielectrics. 2 Capacitors are a means of storing electric charge (and electric energy) It takes energy to bring charge together.
Physics 2102 Lecture 7 Capacitors I Physics 2102 Jonathan Dowling.
FCI1 CHAPTER OUTLINE 1. Definition of Capacitance 2. Calculating Capacitance 3. Combinations of Capacitors 4. Energy Stored in a Charged Capacitor.
Lecture 10 Capacitance and capacitors
Physics 2102 Lecture: 08 THU 11 FEB Capacitance I Physics 2102 Jonathan Dowling 25.1–4.
Capacitance.
Copyright © 2009 Pearson Education, Inc. Various Capacitors Chapter 24 : Capacitance & Dielectrics. (in the book by Giancoli). Chapter 26 in our book.
Capacitance and Dielectrics
Lecture 17 Problems & Solution(1). [1] What is the magnitude of the current flowing in the circuit shown in Fig. 2? [2] A copper wire has resistance 5.
Capacitance Chapter 25 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
CHAPTER 26 : CAPACITANCE AND DIELECTRICS
Electric Energy and Capacitance
P212c25: 1 Chapter 25: Capacitance and Dielectrics Capacitor: two conductors (separated by an insulator) usually oppositely charged a +Q b -Q V ab proportional.
Charges positive (+) negative (-) conservation Force (field) Potential (energy) Force between point charges Force on charge in the field Connect field.
Chapter 25 Capacitors Capacitor and Capacitance A capacitor consists of two isolated conductors (the plates) with charges + q and - q. Its capacitance.
Capacitanc e and Dielectrics AP Physics C Montwood High School R. Casao.
GENERAL PHYSICS LECTURE Chapter 26 CAPACITANCE AND DIELECTRICS Nguyễn Thị Ngọc Nữ PhD: Nguyễn Thị Ngọc Nữ.
Capacitance PHY 2049 Chapter 25 Chapter 25 Capacitance In this chapter we will cover the following topics: -Capacitance C of a system of two isolated.
111/16/2015 ELECTRICITY AND MAGNETISM Phy 220 Chapter 4: Capacitors.
Obtaining Electric Field from Electric Potential Assume, to start, that E has only an x component Similar statements would apply to the y and z.
Capacitance Physics Montwood High School R. Casao.
Chapter 25 Lecture 20: Capacitor and Capacitance.
CHAPTER 26 : CAPACITANCE AND DIELECTRICS
Electrostatics #5 Capacitance. Capacitance I. Define capacitance and a capacitor: Capacitance is defined as the ability of an object to store charge.
Capacitance Chapter 25 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
Electricity and Magnetism Review 2: Units 7-11 Mechanics Review 2, Slide 1.
Electric Potential: Charged Conductor
Physics 2102 Jonathan Dowling Physics 2102 Lecture 8 Capacitors II.
Physics 2113 Lecture: 16 WED 30 SEP Capacitance II Physics 2113 Jonathan Dowling.
12/4/2016 Advanced Physics Capacitance  Chapter 25 – Problems 1, 3, 8, (17), 19, (33), 39, 40 & 49.
CAPACITORS February, 2008 Capacitors Part I A simple Capacitor  Remove the battery  Charge Remains on the plates.  The battery did WORK to charge.
1 Lecture 5 Capacitance Ch. 25 Opening Demo - Discharge a capacitor Topics Capacitance - What is it? Parallel Plate Capacitor Dielectrics and induced dipoles.
Capacitance Chapter 25. Capacitance A capacitor consists of two isolated conductors (the plates) with charges +q and -q. Its capacitance C is defined.
Chapter 24: Capacitance and Dielectrics
Physics 2102 Lecture: 12 MON FEB
Chapter 24 Capacitance Capacitor is a device that stores electrostatic potential energy. A capacitor consists of 2 spatially separated conductors which.
Capacitance and Dielectrics
Consider two conductors carrying charges of equal magnitude but of opposite sign, Such a combination of two conductors is called a capacitor. The.
11/7/2018.
Electric Potential: Charged Conductor
Capacitors Part I.
Consider two conductors carrying charges of equal magnitude but of opposite sign, Such a combination of two conductors is called a capacitor. The capacitance.
Capacitance PHY 2049 Chapter 25.
Capacitance PHY 2049 Chapter 25.
Physics 2102 Lecture: 08 THU 18 FEB
Presentation transcript:

Physics 2102 Gabriela González Physics 2102 Capacitors

Capacitors and Capacitance Capacitor: any two conductors, one with charge +Q, other with charge -Q -Q Potential DIFFERENCE between conductors = V +Q Uses: storing and releasing electric charge/energy. Most electronic capacitors: micro-Farads (mF), pico-Farads (pF) -- 10-12 F New technology: compact 1 F capacitors Q = CV -- C = capacitance Units of capacitance: Farad (F) = Coulomb/Volt

Capacitance Capacitance depends only on GEOMETRICAL factors and on the MATERIAL that separates the two conductors e.g. Area of conductors, separation, whether the space in between is filled with air, plastic, etc. +Q -Q (We first focus on capacitors where gap is filled by AIR!)

Capacitors Electrolytic (1940-70) Electrolytic (new) Paper (1940-70) Variable air, mica Mica (1930-50) Ceramic (1930 on) Tantalum (1980 on)

Capacitors and Capacitance Capacitor: any two conductors, one with charge +Q, other with charge -Q -Q +Q Potential DIFFERENCE between conductors = V Uses: storing and releasing electric charge/energy. Most electronic capacitors: micro-Farads (mF), pico-Farads (pF) -- 10-12 F New technology: compact 1 F capacitors Q = CV C = capacitance Units of capacitance: Farad (F) = Coulomb/Volt

Parallel Plate Capacitor We want capacitance: C=Q/V Area of each plate = A Separation = d charge/area = s= Q/A E field between the plates: (Gauss’ Law) +Q -Q Relate E to potential difference V: What is the capacitance C?

Parallel Plate Capacitor -- example A huge parallel plate capacitor consists of two square metal plates of side 50 cm, separated by an air gap of 1 mm What is the capacitance? C = e0A/d = (8.85 x 10-12 F/m)(0.25 m2)/(0.001 m) = 2.21 x 10-9 F (small!!) Lesson: difficult to get large values of capacitance without special tricks!

Isolated Parallel Plate Capacitor A parallel plate capacitor of capacitance C is charged using a battery. Charge = Q, potential difference = V. Battery is then disconnected. If the plate separation is INCREASED, does potential difference V: (a) Increase? (b) Remain the same? (c) Decrease? +Q -Q Q is fixed! C decreases (=e0A/d) Q=CV; V increases.

Parallel Plate Capacitor & Battery A parallel plate capacitor of capacitance C is charged using a battery. Charge = Q, potential difference = V. Plate separation is INCREASED while battery remains connected. +Q -Q Does the electric field inside: (a) Increase? (b) Remain the same? (c) Decrease? V is fixed by battery! C decreases (=e0A/d) Q=CV; Q decreases E = Q/ e0A decreases

Spherical Capacitor What is the electric field inside the capacitor? (Gauss’ Law) Radius of outer plate = b Radius of inner plate = a Concentric spherical shells: Charge +Q on inner shell, -Q on outer shell Relate E to potential difference between the plates:

Spherical Capacitor What is the capacitance? Radius of outer plate = b C = Q/V = Radius of outer plate = b Radius of inner plate = a Concentric spherical shells: Charge +Q on inner shell, -Q on outer shell Isolated sphere: let b >> a,

Cylindrical Capacitor What is the electric field in between the plates? Radius of outer plate = b Radius of inner plate = a Length of capacitor = L +Q on inner rod, -Q on outer shell Relate E to potential difference between the plates: cylindrical surface of radius r

Cylindrical Capacitor What is the capacitance C? C = Q/V = Radius of outer plate = b Radius of inner plate = a Length of capacitor = L Charge +Q on inner rod, -Q on outer shell Example: co-axial cable.

Summary Any two charged conductors form a capacitor. Capacitance : C= Q/V Simple Capacitors: Parallel plates: C = e0 A/d Spherical : C = 4p e0 ab/(b-a) Cylindrical: C = 2p e0 L/ln(b/a)

Capacitors in Parallel A wire is a conductor, so it is an equipotential. Capacitors in parallel have SAME potential difference but NOT ALWAYS same charge. VAB = VCD = V Qtotal = Q1 + Q2 CeqV = C1V + C2V Ceq = C1 + C2 Equivalent parallel capacitance = sum of capacitances A B C D C1 C2 Q1 Q2 Ceq Qtotal PARALLEL: V is same for all capacitors Total charge in Ceq = sum of charges

Capacitors in series A B C C1 C2 Q1 Q2 Q1 = Q2 = Q (WHY??) VAC = VAB + VBC Ceq Q SERIES: Q is same for all capacitors Total potential difference in Ceq = sum of V

Capacitors in parallel and in series Ceq = C1 + C2 Veq=V1=V2 Qeq=Q1+Q2 C1 C2 Q1 Q2 Ceq Qeq In series : 1/Ceq = 1/C1 + 1/C2 Veq=V1 +V2 Qeq=Q1=Q2 Q1 Q2 C1 C2

Example 1 What is the charge on each capacitor? 10 mF 120V Q = CV; V = 120 V Q1 = (10 mF)(120V) = 1200 mC Q2 = (20 mF)(120V) = 2400 mC Q3 = (30 mF)(120V) = 3600 mC Note that: Total charge (7200 mC) is shared between the 3 capacitors in the ratio C1:C2:C3 -- i.e. 1:2:3

Example 2 What is the potential difference across each capacitor? Q = CV; Q is same for all capacitors Combined C is given by: 10 mF 30 mF 20 mF 120V Ceq = 5.46 mF Q = CV = (5.46 mF)(120V) = 655 mC V1= Q/C1 = (655 mC)/(10 mF) = 65.5 V V2= Q/C2 = (655 mC)/(20 mF) = 32.75 V V3= Q/C3 = (655 mC)/(30 mF) = 21.8 V Note: 120V is shared in the ratio of INVERSE capacitances i.e.1:(1/2):(1/3) (largest C gets smallest V)

Example 3 In the circuit shown, what is the charge on the 10F capacitor? 10 mF 5 mF 10V The two 5F capacitors are in parallel Replace by 10F Then, we have two 10F capacitors in series So, there is 5V across the 10F capacitor of interest Hence, Q = (10F )(5V) = 50C 10 mF 10V

Energy Stored in a Capacitor Start out with uncharged capacitor Transfer small amount of charge dq from one plate to the other until charge on each plate has magnitude Q How much work was needed? dq

Energy Stored in Electric Field Energy stored in capacitor:U = Q2/(2C) = CV2/2 View the energy as stored in ELECTRIC FIELD For example, parallel plate capacitor: Energy DENSITY = energy/volume = u = volume = Ad General expression for any region with vacuum (or air)

Example 10mF capacitor is initially charged to 120V. 20mF capacitor is initially uncharged. Switch is closed, equilibrium is reached. How much energy is dissipated in the process? 10mF (C1) 20mF (C2) Initial charge on 10mF = (10mF)(120V)= 1200mC After switch is closed, let charges = Q1 and Q2. Charge is conserved: Q1 + Q2 = 1200mC Q1 = 400mC Q2 = 800mC Vfinal= Q1/C1 = 40 V Also, Vfinal is same: Initial energy stored = (1/2)C1Vinitial2 = (0.5)(10mF)(120)2 = 72mJ Final energy stored = (1/2)(C1 + C2)Vfinal2 = (0.5)(30mF)(40)2 = 24mJ Energy lost (dissipated) = 48mJ

Dielectric Constant C =  A/d If the space between capacitor plates is filled by a dielectric, the capacitance INCREASES by a factor  This is a useful, working definition for dielectric constant. Typical values of k: 10 - 200 +Q - Q DIELECTRIC C =  A/d

Example Capacitor has charge Q, voltage V Battery remains connected while dielectric slab is inserted. Do the following increase, decrease or stay the same: Potential difference? Capacitance? Charge? Electric field? dielectric slab

Example (soln) Initial values: capacitance = C; charge = Q; potential difference = V; electric field = E; Battery remains connected V is FIXED; Vnew = V (same) Cnew = kC (increases) Qnew = (kC)V = kQ (increases). Since Vnew = V, Enew = E (same) dielectric slab Energy stored? u=e0E2/2 => u=ke0E2/2 = eE2/2

Summary Capacitors in series and in parallel: in series: charge is the same, potential adds, equivalent capacitance is given by 1/C=1/C1+1/C2 in parallel: charge adds, potential is the same, equivalent capaciatnce is given by C=C1+C2. Energy in a capacitor: U=Q2/2C=CV2/2; energy density u=e0E2/2 Capacitor with a dielectric: capacitance increases C’=kC