Illustrating Classification Task

Slides:



Advertisements
Similar presentations
Data Mining Classification: Basic Concepts,
Advertisements

Classification Basic Concepts Decision Trees
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Part I Introduction to Data Mining by Tan,
Classification: Definition Given a collection of records (training set ) –Each record contains a set of attributes, one of the attributes is the class.
Computational Biology Lecture Slides Week 10 Classification (some parts taken from Introduction to Data Mining by Tan, Steinbach, Kumar)
Statistics 202: Statistical Aspects of Data Mining
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Classification: Definition l Given a collection of records (training set) l Find a model.
1 Data Mining Classification Techniques: Decision Trees (BUSINESS INTELLIGENCE) Slides prepared by Elizabeth Anglo, DISCS ADMU.
Decision Tree.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Classification Kuliah 4 4/29/2015. Classification: Definition  Given a collection of records (training set )  Each record contains a set of attributes,
Data Mining Classification This lecture node is modified based on Lecture Notes for Chapter 4/5 of Introduction to Data Mining by Tan, Steinbach, Kumar,
Data Mining Classification: Naïve Bayes Classifier
Decision Trees.
Classification: Basic Concepts and Decision Trees.
Lecture Notes for Chapter 4 Introduction to Data Mining
Classification: Decision Trees, and Naïve Bayes etc. March 17, 2010 Adapted from Chapters 4 and 5 of the book Introduction to Data Mining by Tan, Steinbach,
Decision Trees in R Arko Barman With additions and modifications by Ch. Eick COSC 4335 Data Mining.
CSci 8980: Data Mining (Fall 2002)
1 BUS 297D: Data Mining Professor David Mease Lecture 5 Agenda: 1) Go over midterm exam solutions 2) Assign HW #3 (Due Thurs 10/1) 3) Lecture over Chapter.
Lecture 5 (Classification with Decision Trees)
Example of a Decision Tree categorical continuous class Splitting Attributes Refund Yes No NO MarSt Single, Divorced Married TaxInc NO < 80K > 80K.
Data Mining Course Overview. About the course – Administrivia Instructor: George Kollios, MCS 288, Mon 2:30-4:00PM.
1 Statistics 202: Statistical Aspects of Data Mining Professor David Mease Tuesday, Thursday 9:00-10:15 AM Terman 156 Lecture 11 = Finish ch. 4 and start.
DATA MINING LECTURE 9 Classification Basic Concepts Decision Trees.
1 Data Mining Lecture 3: Decision Trees. 2 Classification: Definition l Given a collection of records (training set ) –Each record contains a set of attributes,
Chapter 4 Classification. 2 Classification: Definition Given a collection of records (training set ) –Each record contains a set of attributes, one of.
Classification. 2 Classification: Definition  Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes.
Classification Basic Concepts, Decision Trees, and Model Evaluation
Lecture 7. Outline 1. Overview of Classification and Decision Tree 2. Algorithm to build Decision Tree 3. Formula to measure information 4. Weka, data.
Machine Learning: Decision Trees Homework 4 assigned
Modul 6: Classification. 2 Classification: Definition  Given a collection of records (training set ) Each record contains a set of attributes, one of.
SOCIAL NETWORKS ANALYSIS SEMINAR INTRODUCTORY LECTURE #2 Danny Hendler and Yehonatan Cohen Advanced Topics in on-line Social Networks Analysis.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation COSC 4368.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Bab /57 Bab 4 Classification: Basic Concepts, Decision Trees & Model Evaluation Part 2 Model Overfitting & Classifier Evaluation.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Classification: Basic Concepts, Decision Trees. Classification: Definition l Given a collection of records (training set ) –Each record contains a set.
Decision Trees Example of a Decision Tree categorical continuous class Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Splitting.
Lecture Notes for Chapter 4 Introduction to Data Mining
1 Illustration of the Classification Task: Learning Algorithm Model.
Big Data Analysis and Mining Qinpei Zhao 赵钦佩 2015 Fall Decision Tree.
Classification: Basic Concepts, Decision Trees. Classification Learning: Definition l Given a collection of records (training set) –Each record contains.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining By Tan, Steinbach,
1 By: Ashmi Banerjee (125186) Suman Datta ( ) CSE- 3rd year.
Introduction to Data Mining Clustering & Classification Reference: Tan et al: Introduction to data mining. Some slides are adopted from Tan et al.
Presentation prepared by Yehonatan Cohen and Danny Hendler Some of the slides based on the online book “Social media mining” Danny Hendler Advanced Topics.
Data Mining Classification and Clustering Techniques Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to Data Mining.
Danny Hendler Advanced Topics in on-line Social Networks Analysis
Classification: Naïve Bayes Classifier
Computational Biology
Lecture Notes for Chapter 4 Introduction to Data Mining
Data Mining Decision Tree Induction
Teori Keputusan (Decision Theory)
Classification Nearest Neighbor
Classification Decision Trees
© 2013 ExcelR Solutions. All Rights Reserved An Introduction to Creating a Perfect Decision Tree.
Data Mining Classification: Basic Concepts and Techniques
Lecture Notes for Chapter 4 Introduction to Data Mining
Classification Basic Concepts, Decision Trees, and Model Evaluation
Machine Learning” Notes 2
Prepared by: Mahmoud Rafeek Al-Farra
Basic Concepts and Decision Trees
آبان 96. آبان 96 Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan,
Statistical Learning Dong Liu Dept. EEIS, USTC.
数据挖掘 Introduction to Data Mining
COSC 6368 Machine Learning Organization
COSC 4368 Intro Supervised Learning Organization
COP5577: Principles of Data Mining Fall 2008 Lecture 4 Dr
Presentation transcript:

Illustrating Classification Task

Example of a Decision Tree categorical continuous class Splitting Attributes Refund Yes No NO MarSt Single, Divorced Married TaxInc NO < 80K > 80K NO YES Training Data Model: Decision Tree

Another Example of Decision Tree categorical categorical continuous class MarSt Single, Divorced Married NO Refund No Yes NO TaxInc < 80K > 80K NO YES There could be more than one tree that fits the same data!

Decision Tree Classification Task

Apply Model to Test Data Start from the root of tree. Refund MarSt TaxInc YES NO Yes No Married Single, Divorced < 80K > 80K

Apply Model to Test Data Refund MarSt TaxInc YES NO Yes No Married Single, Divorced < 80K > 80K

Apply Model to Test Data Refund Yes No NO MarSt Single, Divorced Married TaxInc NO < 80K > 80K NO YES

Apply Model to Test Data Refund Yes No NO MarSt Single, Divorced Married TaxInc NO < 80K > 80K NO YES

Apply Model to Test Data Refund Yes No NO MarSt Single, Divorced Married TaxInc NO < 80K > 80K NO YES

Apply Model to Test Data Refund Yes No NO MarSt Married Assign Cheat to “No” Single, Divorced TaxInc NO < 80K > 80K NO YES

Decision Tree Classification Task