Electromagnetism: Tutorial

Slides:



Advertisements
Similar presentations
Request Dispatching for Cheap Energy Prices in Cloud Data Centers
Advertisements

SpringerLink Training Kit
Luminosity measurements at Hadron Colliders
From Word Embeddings To Document Distances
Choosing a Dental Plan Student Name
Virtual Environments and Computer Graphics
Chương 1: CÁC PHƯƠNG THỨC GIAO DỊCH TRÊN THỊ TRƯỜNG THẾ GIỚI
THỰC TIỄN KINH DOANH TRONG CỘNG ĐỒNG KINH TẾ ASEAN –
D. Phát triển thương hiệu
NHỮNG VẤN ĐỀ NỔI BẬT CỦA NỀN KINH TẾ VIỆT NAM GIAI ĐOẠN
Điều trị chống huyết khối trong tai biến mạch máu não
BÖnh Parkinson PGS.TS.BS NGUYỄN TRỌNG HƯNG BỆNH VIỆN LÃO KHOA TRUNG ƯƠNG TRƯỜNG ĐẠI HỌC Y HÀ NỘI Bác Ninh 2013.
Nasal Cannula X particulate mask
Evolving Architecture for Beyond the Standard Model
HF NOISE FILTERS PERFORMANCE
Electronics for Pedestrians – Passive Components –
Parameterization of Tabulated BRDFs Ian Mallett (me), Cem Yuksel
L-Systems and Affine Transformations
CMSC423: Bioinformatic Algorithms, Databases and Tools
Some aspect concerning the LMDZ dynamical core and its use
Bayesian Confidence Limits and Intervals
实习总结 (Internship Summary)
Current State of Japanese Economy under Negative Interest Rate and Proposed Remedies Naoyuki Yoshino Dean Asian Development Bank Institute Professor Emeritus,
Front End Electronics for SOI Monolithic Pixel Sensor
Face Recognition Monday, February 1, 2016.
Solving Rubik's Cube By: Etai Nativ.
CS284 Paper Presentation Arpad Kovacs
انتقال حرارت 2 خانم خسرویار.
Summer Student Program First results
Theoretical Results on Neutrinos
HERMESでのHard Exclusive生成過程による 核子内クォーク全角運動量についての研究
Wavelet Coherence & Cross-Wavelet Transform
yaSpMV: Yet Another SpMV Framework on GPUs
Creating Synthetic Microdata for Higher Educational Use in Japan: Reproduction of Distribution Type based on the Descriptive Statistics Kiyomi Shirakawa.
MOCLA02 Design of a Compact L-­band Transverse Deflecting Cavity with Arbitrary Polarizations for the SACLA Injector Sep. 14th, 2015 H. Maesaka, T. Asaka,
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Fuel cell development program for electric vehicle
Overview of TST-2 Experiment
Optomechanics with atoms
داده کاوی سئوالات نمونه
Inter-system biases estimation in multi-GNSS relative positioning with GPS and Galileo Cecile Deprez and Rene Warnant University of Liege, Belgium  
ლექცია 4 - ფული და ინფლაცია
10. predavanje Novac i financijski sustav
Wissenschaftliche Aussprache zur Dissertation
FLUORECENCE MICROSCOPY SUPERRESOLUTION BLINK MICROSCOPY ON THE BASIS OF ENGINEERED DARK STATES* *Christian Steinhauer, Carsten Forthmann, Jan Vogelsang,
Particle acceleration during the gamma-ray flares of the Crab Nebular
Interpretations of the Derivative Gottfried Wilhelm Leibniz
Advisor: Chiuyuan Chen Student: Shao-Chun Lin
Widow Rockfish Assessment
SiW-ECAL Beam Test 2015 Kick-Off meeting
On Robust Neighbor Discovery in Mobile Wireless Networks
Chapter 6 并发:死锁和饥饿 Operating Systems: Internals and Design Principles
You NEED your book!!! Frequency Distribution
Y V =0 a V =V0 x b b V =0 z
Fairness-oriented Scheduling Support for Multicore Systems
Climate-Energy-Policy Interaction
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Ch48 Statistics by Chtan FYHSKulai
The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities.
Measure Twice and Cut Once: Robust Dynamic Voltage Scaling for FPGAs
Online Learning: An Introduction
Factor Based Index of Systemic Stress (FISS)
What is Chemistry? Chemistry is: the study of matter & the changes it undergoes Composition Structure Properties Energy changes.
THE BERRY PHASE OF A BOGOLIUBOV QUASIPARTICLE IN AN ABRIKOSOV VORTEX*
Quantum-classical transition in optical twin beams and experimental applications to quantum metrology Ivano Ruo-Berchera Frascati.
The Toroidal Sporadic Source: Understanding Temporal Variations
FW 3.4: More Circle Practice
ارائه یک روش حل مبتنی بر استراتژی های تکاملی گروه بندی برای حل مسئله بسته بندی اقلام در ظروف
Decision Procedures Christoph M. Wintersteiger 9/11/2017 3:14 PM
Limits on Anomalous WWγ and WWZ Couplings from DØ
Presentation transcript:

Electromagnetism: Tutorial JUAS 2013: Electromagnetism Exercises H. Henke

Tut-Ex 1 Given is a conducting hollow sphere carrying a charge Q. What is the field inside and outside and what is the stored energy? 𝐷 ⋅𝑑 𝐹 = ρ 𝑑𝑉 a Q → 𝐸 = 0 𝑄 4π ϵ 0 𝑟 2 𝑒 𝑟 𝐷 ⋅𝑑 𝐹 = 0𝑟≤𝑎 𝑄𝑟≥𝑎 JUAS 2013: Electromagnetism Exercises H. Henke

Stored energy 𝑊 𝑒 = 1 2 𝐸 ⋅ 𝐷 𝑑𝑉= 𝑄 2 8π ε 0 𝑎 ∞ 𝑑𝑟 𝑟 2 = 𝑄 2 8π ε 0 𝑎 𝑊 𝑒 = 1 2 𝐸 ⋅ 𝐷 𝑑𝑉= 𝑄 2 8π ε 0 𝑎 ∞ 𝑑𝑟 𝑟 2 = 𝑄 2 8π ε 0 𝑎 𝑊 𝑒 = 1 2 ρ Φ𝑑𝑉= 1 2 ρ 𝑆 Φ𝑑𝐹 = 1 2 𝑄 4π 𝑎 2 𝑄 4π ϵ 0 𝑎 𝑑𝐹= 𝑄 2 8π ϵ 0 𝑎 JUAS 2013: Electromagnetism Exercises H. Henke

Tut-Ex 2 A capacitor C is filled with a lossy dielectric and charged to a voltage V. What is the time constant for discharge? A y εr κ V, C 𝐶𝑐𝑎𝑟𝑟𝑖𝑒𝑠𝑎𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑐ℎ𝑎𝑟𝑔𝑒 𝑞 𝑆 = 𝐶𝑉 𝐴 =𝐷 ∇ ⋅ ∇ × 𝐻 =𝐽+ ∂ 𝐷 ∂𝑡 → κ ϵ ∇ ⋅ 𝐷 + 𝑑 𝑑𝑡 ∇ ⋅ 𝐷 =0 κ ε 𝐷 + 𝑑 𝐷 𝑑𝑡 =0→ 𝐷 = 𝐷 0 e −𝑡 𝑇 ε , 𝑇 ε = ε κ JUAS 2013: Electromagnetism Exercises H. Henke

Tut-Ex 3 Given is a 1-dimensional planar diode. What is the current density at saturation? 𝑃𝑜𝑖𝑠𝑠𝑜𝑛𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝑑 2 Φ 𝑧 𝑑𝑧 2 = 𝑒 𝑛 𝑒 𝑧 ϵ 0 𝑎𝑡𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛: 𝐸 𝑧=0 = 𝑑ϕ 𝑑𝑧 =0 JUAS 2013: Electromagnetism Exercises H. Henke

𝑘𝑖𝑛𝑒𝑡𝑖𝑐𝑒𝑛𝑒𝑟𝑔𝑦:𝑒Φ 𝑧 = 1 2 𝑚 0 𝑣 2 𝑧 𝑘𝑖𝑛𝑒𝑡𝑖𝑐𝑒𝑛𝑒𝑟𝑔𝑦:𝑒Φ 𝑧 = 1 2 𝑚 0 𝑣 2 𝑧 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑑𝑒𝑛𝑠𝑖𝑡𝑦:𝐽=𝑒 𝑛 𝑒 𝑒 𝑣 𝑧 =𝑒 𝑛 𝑒 𝑧 2𝑒Φ 𝑧 𝑚 0 𝑃𝑜𝑖𝑠𝑠𝑜𝑛𝑒𝑞𝑢.: 𝑑 2 Φ 𝑑𝑧 2 = 𝑚 0 2𝑒Φ 𝐽 ϵ 0 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑖𝑛𝑔𝑤𝑖𝑡ℎ2𝑑 Φ 𝑑𝑧 and𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑛𝑔 𝑑Φ 𝑑𝑧 2 = 4 ϵ 0 𝐽 𝑚 0 2𝑒 Φ +𝐶 JUAS 2013: Electromagnetism Exercises H. Henke

𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑡𝑧=0: Φ=0,𝐸=𝑑 Φ 𝑑𝑧 =0→𝐶=0 𝑑Φ 𝑑𝑧 =2 𝐽 ϵ 0 1 2 𝑚 0 2𝑒 Φ 1 4 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑡𝑧=0: Φ=0,𝐸=𝑑 Φ 𝑑𝑧 =0→𝐶=0 𝑑Φ 𝑑𝑧 =2 𝐽 ϵ 0 1 2 𝑚 0 2𝑒 Φ 1 4 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛: 4 3 Φ 3 4 =2 𝐽 ϵ 0 1 2 𝑚 0 2𝑒 1 4 𝑧+𝐶 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠:Φ 𝑧=0 =0,Φ 𝑧=𝑑 = 𝑉 0 𝐽= 4 9 ϵ 0 2 𝑒 𝑚 0 𝑉 0 3 2 𝑑 2 𝐶ℎ𝑖𝑙𝑑−𝐿𝑎𝑛𝑔𝑚𝑢𝑖𝑟𝑙𝑎𝑤 JUAS 2013: Electromagnetism Exercises H. Henke

Derive the magnetic vector potential for a given current density. Tut-Ex 4 Derive the magnetic vector potential for a given current density. ∇ ⋅ 𝐵 =0→ 𝐵 = ∇ × 𝐴 ∇ × 𝐵 = ∇ ∇ ⋅ 𝐴 − ∇ 2 𝐴 =μ 𝐽 ∇ ⋅ 𝐴 =0→ ∇ 2 𝐴 =−μ 𝐽 ∇ 2 𝐴 𝑖 =−μ 𝐽 𝑖 ,𝑖=𝑥,𝑦,𝑧 1 𝑃𝑜𝑖𝑠𝑠𝑜𝑛𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: ∇ 2 Φ=− ρ ϵ 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑜𝑓𝑝𝑜𝑖𝑛𝑡𝑐ℎ𝑎𝑟𝑔𝑒:Φ= 𝑞 4πϵ𝑟 JUAS 2013: Electromagnetism Exercises H. Henke

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑜𝑓𝑐ℎ𝑎𝑟𝑔𝑒𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛: Φ 𝑟 = 1 4πϵ ρ 𝑟 ′ ∣ 𝑟 − 𝑟 ′∣ 𝑑𝑉′ 2 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑜𝑓𝑐ℎ𝑎𝑟𝑔𝑒𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛: Φ 𝑟 = 1 4πϵ ρ 𝑟 ′ ∣ 𝑟 − 𝑟 ′∣ 𝑑𝑉′ 2 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠𝑜𝑓 1 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑎𝑠 2 Φ→ 𝐴 𝑖 , 1 ϵ →μ,ρ→ 𝐽 𝑖 𝐴 𝑟 = μ 4π 𝐽 𝑟 ′ ∣ 𝑟 − 𝑟 ′∣ 𝑑𝑉′ JUAS 2013: Electromagnetism Exercises H. Henke

What is the end energy and the total accelerating voltage? Tut-Ex 5 Given is a non-relativistic cyclotron with a constant magnetic induction B and maximum radius R. What is the end energy and the total accelerating voltage? 𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑙𝑓𝑜𝑟𝑐𝑒𝑒𝑞𝑢𝑎𝑙𝑠𝐿𝑜𝑟𝑒𝑛𝑡𝑧𝑓𝑜𝑟𝑐𝑒: 𝑚 0 𝑣 2 𝑟 =𝑞𝑣𝐵→ 𝑣 𝑚𝑎𝑥 = 𝑞𝐵 𝑚 0 𝑅 JUAS 2013: Electromagnetism Exercises H. Henke

Example : R=0.5m, B=1.5T, deuterium (p, n) with q=e, m0=3.34 10-27kg 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑘𝑖𝑛𝑒𝑡𝑖𝑐𝑒𝑛𝑒𝑟𝑔𝑦: 𝐸 𝑘𝑖𝑛 = 1 2 𝑚 0 𝑣 𝑚𝑎𝑥 2 = 1 2 𝑞 2 𝑚 0 𝐵 2 𝑅 2 𝑡𝑜𝑡𝑎𝑙𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑𝑣𝑜𝑙𝑡𝑎𝑔𝑒: 𝑉= 𝐸 𝑘𝑖𝑛 𝑞 = 1 2 𝑞 𝑚 0 𝐵 2 𝑅 2 𝑐𝑦𝑐𝑙𝑜𝑡𝑟𝑜𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦and𝑅𝐹−𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦: ω 𝐶 =2π𝑓= 2π 𝑇 = 𝑣 𝑟 = 𝑞𝐵 𝑚 0 , ω 𝑅𝐹 =2 ω 𝐶 Example : R=0.5m, B=1.5T, deuterium (p, n) with q=e, m0=3.34 10-27kg Ekin=13.5 MeV, fRF=23 MHz JUAS 2013: Electromagnetism Exercises H. Henke

Tut-Ex 6 A long dipole magnet is excited by a coil with n windings and current I0. Calculate the magnetic field in the air gap. 𝐻 ⋅𝑑 𝑠 = 𝐽 ⋅𝑑 𝐴 𝐻 𝑖 𝑙+ 𝐻 𝑜 𝑔=𝑛 𝐼 0 l n×I0 g 𝐵 𝑖 = 𝐵 𝑜 →μ 𝐻 𝑖 = μ 0 𝐻 𝑜 𝐻 𝑜 = 𝑛 𝐼 0 𝑔+ μ 0 𝑙 μ ≈ 𝑛 𝐼 0 𝑔 μ JUAS 2013: Electromagnetism Exercises H. Henke

What is the time-averaged radiated power density? Tut-Ex 7 Give the E- and H-field of a z-polarized plane wave which propagates in x-direction. What is the time-averaged radiated power density? 𝐸 = 𝐸 0 e 𝑖 ω𝑡−𝑘𝑥 𝑒 𝑧 ,𝑘= ω 𝑐 𝑍 𝐻 = 𝑒 𝑥 × 𝐸 =− 𝐸 0 e 𝑖 ω𝑡−𝑘𝑥 𝑒 𝑦 ,𝑍= μ ϵ 𝑆 𝑐 = 1 2 𝐸 × 𝐻 ∗ = 1 2Z ∣ 𝐸 0 ∣ 2 𝑒 𝑥 JUAS 2013: Electromagnetism Exercises H. Henke

What is the equation for the separation constants? Tut-Ex 8 Derive the longitudinal vector potential for TM-waves in a rectangular waveguide. What is the equation for the separation constants? ∂ 2 𝐴 𝑧 ∂ 𝑥 2 + ∂ 2 𝐴 𝑧 ∂ 𝑦 2 + ∂ 2 𝐴 𝑧 ∂ 𝑧 2 + 𝑘 2 𝐴 𝑧 =0,𝑘= ω 𝑐 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖𝑎𝑛𝑠𝑎𝑡𝑧: 𝐴 𝑧 𝑥,𝑦,𝑧 =𝑋 𝑥 𝑌 𝑦 𝑍 𝑧 1 𝑋 𝑑 2 𝑋 𝑑𝑥 2 ⏟ − 𝑘 𝑥 2 + 1 𝑌 𝑑 2 𝑌 𝑑𝑦 2 ⏟ − 𝑘 𝑦 2 + 1 𝑍 𝑑 2 𝑍 𝑑𝑧 2 ⏟ − 𝑘 𝑧 2 + 𝑘 2 =0 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑞𝑢.𝑜𝑓𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 : 𝑘 2 = 𝑘 𝑥 2 + 𝑘 𝑦 2 + 𝑘 𝑧 2 JUAS 2013: Electromagnetism Exercises H. Henke

𝑓𝑜𝑟𝑌 𝑦 ,𝑍 𝑧 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑙𝑦. 𝑑 2 𝑋 𝑑𝑥 2 + 𝑘 𝑥 2 𝑋=0→𝑋= 𝐶 1 cos 𝑘 𝑥 𝑥 + 𝐶 2 sin 𝑘 𝑥 𝑥 = cos 𝑘 𝑥 𝑥 sin 𝑘 𝑥 𝑥 or e 𝑖𝑘 𝑥 𝑥 e − 𝑖𝑘 𝑥 𝑥 𝑓𝑜𝑟𝑌 𝑦 ,𝑍 𝑧 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑙𝑦. 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐴 𝑧 𝑥,𝑦,𝑧 = cos 𝑘 𝑥 𝑥 sin 𝑘 𝑥 𝑥 cos 𝑘 𝑦 𝑦 sin 𝑘 𝑦 𝑦 e 𝑖𝑘 𝑧 𝑧 e − 𝑖𝑘 𝑧 𝑧 e 𝑖ω𝑡 𝑇𝑀−𝑤𝑎𝑣𝑒𝑠: 𝐻 = ∇ ×𝐴 𝑒 𝑧 𝐸 𝑧 =− 1 𝑖ωϵ 1 ρ ∂ ∂ρ ρ ∂ 𝐴 𝑧 ∂ρ + 1 ρ 2 ∂ 2 𝐴 𝑧 ∂ φ 2 = 𝑘 𝑥 2 + 𝑘 𝑦 2 𝑖ωϵ 𝐴 𝑧 ∼ 𝐴 𝑧 JUAS 2013: Electromagnetism Exercises H. Henke

𝐸 𝑧 𝑥=0,𝑎 = 𝐸 𝑧 𝑦=0,𝑏 =0: 𝐴 𝑧 =𝐶𝑠𝑖𝑛 𝑘 𝑥 𝑥 sin 𝑘 𝑦 𝑦 e 𝑖 ω𝑡− 𝑘 𝑧 𝑧 , 𝑘 𝑥 =𝑚 π 𝑎 , 𝑘 𝑦 =𝑛 π 𝑏 𝑘 2 = ω 𝑐 2 = 𝑚 π 𝑎 2 + 𝑛 π 𝑏 2 + 𝑘 𝑧 2 Tut-Ex 9 Give the longitudinal wavelength and phase and group velocity of a TE10-mode in a rectangular waveguide. 𝑚=1,𝑛=0: 𝑘 𝑧 = 2π λ 𝑧 = 𝑘 2 − π 𝑎 2 → λ 𝑧 = λ 0 1− λ 0 2a 2 JUAS 2013: Electromagnetism Exercises H. Henke

E, H y TE10-mode b a x 𝑣 𝑝ℎ = ω β = ω 𝑘 𝑧 = 𝑐 1− λ 0 2 𝑎 2 >𝑐 𝑣 𝑝ℎ = ω β = ω 𝑘 𝑧 = 𝑐 1− λ 0 2 𝑎 2 >𝑐 𝑣 𝑔 = ∂ω ∂β = ∂ω ∂ 𝑘 𝑧 =𝑐 1− λ 0 2 𝑎 2 <𝑐 → 𝑣 𝑝ℎ 𝑣 𝑔 = 𝑐 2 y TE10-mode b E, H a x JUAS 2013: Electromagnetism Exercises H. Henke

What is the lowest mode in a circular waveguide? Tut-Ex 10 What is the lowest mode in a circular waveguide? Show the field pattern. In which frequency range is mono-mode operation possible? 𝑇𝐸 11 −𝑚𝑜𝑑𝑒: 𝐾 11 = 𝑗 11 ′ 𝑎 = 𝑘 2 − 𝑘 𝑧 2 , 𝑗 11 ′=1.841 𝑇𝑀 01 −𝑚𝑜𝑑𝑒: 𝑘 𝑐 = 𝑗 01 𝑎 , 𝑗 01 =2.405 𝑓 𝑐11 = 𝑗 11 ′ 𝑐 2 π𝑎→ 𝑓 𝐶01 = 𝑗 01 𝑐 2 π𝑎 JUAS 2013: Electromagnetism Exercises H. Henke

JUAS 2013: Electromagnetism Exercises H. Henke

Tut-Ex 11 Calculate the accelerating voltage, shunt impedance and R-upon-Q of a TM010-mode pill-box cavity. 𝑜𝑛𝑎𝑥𝑖𝑠: 𝐸 𝑧 =−𝑖 2 ωϵ 𝑗 01 𝑎 2 𝐷 010 e 𝑖ω𝑡 𝑉 𝑚 = ∣ 0 𝑔 𝑎 𝑚 𝑒 𝑚 ⋅ 𝑒 𝑧 e 𝑖ω𝑡 𝑑𝑧∣ = ∣ 0 𝑔 𝐸 𝑧 e 𝑖ω 𝑧 𝑣 𝑑𝑧∣ ,𝑧=𝑣𝑡 = 2 ωϵ 𝑗 01 𝑎 2 𝐷 010 𝑔𝑇,𝑇= sin ω 𝑔 2v ω 𝑔 2v JUAS 2013: Electromagnetism Exercises H. Henke

𝑅 𝑠ℎ = 𝑉 2 𝑃 𝑑 = 4 π 𝑍 δ 𝑆 𝑔 2 𝑎+𝑔 𝑇 2 𝑗 01 𝐽 1 2 𝑗 01 𝑃 𝑑 = 4π κ δ 𝑠 𝑗 01 2 1+ 𝑔 𝑎 ∣ 𝐷 010 ∣ 2 𝐽 1 2 𝑗 01 𝑅 𝑠ℎ = 𝑉 2 𝑃 𝑑 = 4 π 𝑍 δ 𝑆 𝑔 2 𝑎+𝑔 𝑇 2 𝑗 01 𝐽 1 2 𝑗 01 𝑊 = 2π𝑔 ω 2 ϵ 𝑗 01 4 𝑎 2 ∣ 𝐷 010 ∣ 2 𝐽 1 2 𝑗 01 𝑅 𝑠ℎ 𝑄 0 = 𝑉 2 ω 𝑊 = 2 π 𝑍 𝑔 𝑎 𝑇 2 𝑗 01 𝐽 1 2 𝑗 𝑜1 JUAS 2013: Electromagnetism Exercises H. Henke