Colloque Paul GauduchonPalaiseau, 20/05/05 8-DIMENSIONAL QUATERNIONIC GEOMETRY 8-DIMENSIONAL QUATERNIONIC GEOMETRY Simon Salamon Politecnico di Torino.

Slides:



Advertisements
Similar presentations
IIB on K3 £ T 2 /Z 2 orientifold + flux and D3/D7: a supergravity view-point Dr. Mario Trigiante (Politecnico di Torino)
Advertisements

F. Debbasch (LERMA-ERGA Université Paris 6) and M. Bustamante, C. Chevalier, Y. Ollivier Statistical Physics and relativistic gravity ( )
1 Motion and Manipulation Configuration Space. Outline Motion Planning Configuration Space and Free Space Free Space Structure and Complexity.
Distance Preserving Embeddings of Low-Dimensional Manifolds Nakul Verma UC San Diego.
M. Belkin and P. Niyogi, Neural Computation, pp. 1373–1396, 2003.
Linear Subspaces - Geometry. No Invariants, so Capture Variation Each image = a pt. in a high-dimensional space. –Image: Each pixel a dimension. –Point.
Calabi-Yau compactifications: results, relations & problems
Type IIB Supergravity, D3 branes and ALE manifolds
Non-perturbative effects in string theory compactifications Sergey Alexandrov Laboratoire Charles Coulomb Université Montpellier 2 in collaboration with.
Cosmic Billiards are fully integrable: Tits Satake projections and Kac Moody extensions Talk by Pietro Frè at Corfu 2005”
The Topological G 2 String Asad Naqvi (University of Amsterdam) (in progress) with Jan de Boer and Assaf Shomer hep-th/0506nnn.
Magnetic Monopoles E.A. Olszewski Outline I. Duality (Bosonization) II. The Maxwell Equations III. The Dirac Monopole (Wu-Yang) IV. Mathematics Primer.
Differential geometry I
Pietro Fré Dubna July 2003 ] exp[ / Solv H
HAMILTONIAN STRUCTURE OF THE PAINLEVE’ EQUATIONS.
A journey inside planar pure QED CP3 lunch meeting By Bruno Bertrand November 19 th 2004.
Vincent Rodgers © Vincent Rodgers © Courant brackets are a framework for describing new string.
Mee Seong Im, UIUC Singularities in Calabi-Yau varieties Mee Seong Im The University of Illinois Urbana-Champaign July 21, 2008.
Osculating curves Étienne Ghys CNRS- ENS Lyon « Geometry and the Imagination » Bill Thurston’s 60 th birthday Princeton, June 2007.
The arrow of time and the Weyl group: all supergravity billiards are integrable Talk by Pietro Frè at SISSA Oct. 2007” based on work of P.F. with A.S.Sorin.
Mathematical Physics Seminar Notes Lecture 3 Global Analysis and Lie Theory Wayne M. Lawton Department of Mathematics National University of Singapore.
ASYMPTOTIC STRUCTURE IN HIGHER DIMENSIONS AND ITS CLASSIFICATION KENTARO TANABE (UNIVERSITY OF BARCELONA) based on KT, Kinoshita and Shiromizu PRD
GEOMETRIC ALGEBRAS Manuel Berrondo Brigham Young University Provo, UT, 84097
Георги М. Михайлов - Politecnico di Torino. Gueorgui M. Mihaylov - Politecnico di Torino.
1 Last lecture  Path planning for a moving Visibility graph Cell decomposition Potential field  Geometric preliminaries Implementing geometric primitives.
Lecture IV – Invariant Correspondence
GEOMETRIC ALGEBRAS IN E.M. Manuel Berrondo Brigham Young University Provo, UT, 84097
EXISTENCE OF NON-ISOTROPIC CONJUGATE POINTS ON RANK ONE NORMAL HOMOGENEOUS SPACES C. González-Dávila(U. La Laguna) and A. M. Naveira, U. Valencia, Spain.
Preperiodic Points and Unlikely Intersections joint work with Laura DeMarco Matthew Baker Georgia Institute of Technology AMS Southeastern Section Meeting.
Integrable hierarchies of
2008 May 315th Italian-Sino Workshop Yu-Huei Wu and Chih-Hung Wang Accept by Classical and Quantum Gravity without correction Provisionally scheduled to.
Finsler Geometrical Path Integral Erico Tanaka Palacký University Takayoshi Ootsuka Ochanomizu University of Debrecen WORKSHOP ON.
Symplectic Group.  The orthogonal groups were based on a symmetric metric. Symmetric matrices Determinant of 1  An antisymmetric metric can also exist.
AdS 4 £ CP 3 superspace Dmitri Sorokin INFN, Sezione di Padova ArXiv: Jaume Gomis, Linus Wulff and D.S. SQS’09, Dubna, 30 July 2009 ArXiv:
Computer Vision Lab. SNU Young Ki Baik Nonlinear Dimensionality Reduction Approach (ISOMAP, LLE)
Algebroids, heterotic moduli spaces and the Strominger system James Gray, Virginia Tech Based on work with: Alexander Haupt and Andre Lukas ????
Effective supergravity descriptions of superstring cosmology Antoine Van Proeyen K.U. Leuven Barcelona, IRGAC, July 2006.
Solvable Lie Algebras in Supergravity and Superstrings Pietro Fré Bonn February 2002 An algebraic characterization of superstring dualities.
LLM geometries in M-theory and probe branes inside them Jun-Bao Wu IHEP, CAS Nov. 24, 2010, KITPC.
Gaugings and other Supergravity Tools for p brane Physics Pietro Fré Lectures at the RTN School, Paris 2001 IHS.
Z THEORY Nikita Nekrasov IHES/ITEP Nagoya, 9 December 2004.
A. Aizenbud and D. Gourevitch Gelfand Pairs Regular pairs We call the property (2)
Positively Expansive Maps and Resolution of Singularities Wayne Lawton Department of Mathematics National University of Singapore
Laboratoire Charles Coulomb
Maximal super Yang-Mills theories on curved background with off-shell supercharges 総合研究大学院大学 藤塚 理史 共同研究者: 吉田 豊 氏 (KEK), 本多 正純 氏 ( 総研大 /KEK) based on M.
Takaaki Nomura(Saitama univ)
Hodge Theory Calculus on Smooth Manifolds. by William M. Faucette Adapted from lectures by Mark Andrea A. Cataldo.
University of Oslo & Caltech
§ Linear Spaces Christopher Crawford PHY
Equivariant A-twisted GLSM and Gromov-Witten invariants
Geometric Algebra 9. Unification Dr Chris Doran ARM Research.
Christopher Crawford PHY
Takaaki Nomura(Saitama univ)
An Introduction to Riemannian Geometry
Unsupervised Riemannian Clustering of Probability Density Functions
Gravitational Energy: a quasi-local, Hamiltonian approach
Automatically trivial fibrations
Non-manifold Multiresolution Modeling (some preliminary results)
Comments On Global Anomalies In Six-Dimensional Supergravity
Special quaternionic manifolds from variations of Hodge structures
Differential Manifolds and Tensors
علم الرياضيات وأهميته للعلوم
Hyun Seok Yang Center for Quantum Spacetime Sogang University
Section 7.1 – Rational Expressions
Kaluza-Klein Black Holes in 5-dim. Einstein-Maxwell Theory
Heterotic strings and fluxes: status and prospects
A SUPERGRAVITY SOLUTIONS TOOL BOX
Submanifolds and holonomy Sergio Console
Section P.5 – Rational Expressions
Example of a geometric structure: Riemannian metric
Presentation transcript:

Colloque Paul GauduchonPalaiseau, 20/05/05 8-DIMENSIONAL QUATERNIONIC GEOMETRY 8-DIMENSIONAL QUATERNIONIC GEOMETRY Simon Salamon Politecnico di Torino

Colloque Paul GauduchonPalaiseau, 20/05/05 Contents Dirac operators Model geometries 4-forms and spinors Types of Q structures Q symplectic manifolds

Colloque Paul GauduchonPalaiseau, 20/05/05 4-FORMS AND SPINORS 4-FORMS AND SPINORS

Colloque Paul GauduchonPalaiseau, 20/05/05 4-forms in dimension 8 Possible dimensions include

Colloque Paul GauduchonPalaiseau, 20/05/05 A simple example

Colloque Paul GauduchonPalaiseau, 20/05/05 A complex variant

Colloque Paul GauduchonPalaiseau, 20/05/05 A complex variant

Colloque Paul GauduchonPalaiseau, 20/05/05 The quaternionic 4-form

Colloque Paul GauduchonPalaiseau, 20/05/05 Set of OQSs Symmetric spaces 3-forms 8 = forms 8 = 3 + 5

Colloque Paul GauduchonPalaiseau, 20/05/05 Triality for Sp(2)Sp(1)

Colloque Paul GauduchonPalaiseau, 20/05/05 Clifford multiplication X determines 8 = 3 + 5

Colloque Paul GauduchonPalaiseau, 20/05/05 TYPES OF QUATERNIONIC STRUCTURES TYPES OF QUATERNIONIC STRUCTURES

Colloque Paul GauduchonPalaiseau, 20/05/05 Reduction of structure The 4-form determines the metric and Levi-Civita connection on the bundle with fibre The 4-form determines the metric and Levi-Civita connection on the bundle with fibre

Colloque Paul GauduchonPalaiseau, 20/05/05 Intrinsic torsion

Colloque Paul GauduchonPalaiseau, 20/05/05 Q symplectic manifolds

Colloque Paul GauduchonPalaiseau, 20/05/05 Quaternionic manifolds Nijenhuis = 0

Colloque Paul GauduchonPalaiseau, 20/05/05 M 8 has an integrable twistor space I,J,K can be chosen with I complex Quaternionic manifolds

Colloque Paul GauduchonPalaiseau, 20/05/05 DIRAC OPERATORS

Colloque Paul GauduchonPalaiseau, 20/05/05 Rigidity principle G acts trivially on M Wolf space

Colloque Paul GauduchonPalaiseau, 20/05/05 The tautological section An Sp(2)Sp(1) structure determines or

Colloque Paul GauduchonPalaiseau, 20/05/05 Proposition [Witt] The tautological section

Colloque Paul GauduchonPalaiseau, 20/05/05 Killing spinors M QK, X an infinitesimal isometry

Colloque Paul GauduchonPalaiseau, 20/05/05 Killing spinors

Colloque Paul GauduchonPalaiseau, 20/05/05 MODEL GEOMETRIES

Colloque Paul GauduchonPalaiseau, 20/05/05 M is QK ( ) M is Einstein ( ) M 8 is symmetric Quaternion-Kahler manifolds

Colloque Paul GauduchonPalaiseau, 20/05/05 Wolf spaces M 8 QK symmetric

Colloque Paul GauduchonPalaiseau, 20/05/05 1. Projection Links with HK and G 2 holonomy

Colloque Paul GauduchonPalaiseau, 20/05/05 Complex coadjoint orbits Any nilpotent orbit N has both QK and HK metrics The hunt for potentials: [Biquard-Gauduchon, Swann]

Colloque Paul GauduchonPalaiseau, 20/05/05 2. The case SL(3,C) 8 = 3 + 5

Colloque Paul GauduchonPalaiseau, 20/05/05 2. The case SL(3,C) M 8 parametrizes a subset of OQSs

Colloque Paul GauduchonPalaiseau, 20/05/05 QUATERNIONIC SYMPLECTIC MANIFOLDS

Colloque Paul GauduchonPalaiseau, 20/05/05 Q contact structures On hypersurfaces and asymptotic boundaries of QK manifolds with non-degenerate Levi form

Colloque Paul GauduchonPalaiseau, 20/05/05 An extra integrability condition is needed for n=1 and allows one to extend QCSs on S 7 [Duchemin] Without the integrability condition, extension to a Q symplectic metric is nonetheless possible Q contact structures

Colloque Paul GauduchonPalaiseau, 20/05/05 3. The case SO(5,C) Fibration based on the reduction

Colloque Paul GauduchonPalaiseau, 20/05/05 3. The case SO(5,C) Total space is both Kahler and QK:

Colloque Paul GauduchonPalaiseau, 20/05/05 3. The case SO(5,C) X 6 has a subspace of 3-forms

Colloque Paul GauduchonPalaiseau, 20/05/05 T 2 product examples Ingredients: symplectic with closed primitive 3-forms giving closed 4-form Ingredients: symplectic with closed primitive 3-forms giving closed 4-form

Colloque Paul GauduchonPalaiseau, 20/05/05 Compact nilmanifold examples have 3 transverse simple closed 3-forms, with reduction T 2 product examples Applications to SL/CY geometry [Giovannini, Matessi]

Colloque Paul GauduchonPalaiseau, 20/05/05 8-DIMENSIONAL QUATERNIONIC GEOMETRY 8-DIMENSIONAL QUATERNIONIC GEOMETRY