POINTS OF CONCURRENCY In this lesson we will define what a point of concurrency is. Then we will look at 4 points of concurrency in triangles. As you go.

Slides:



Advertisements
Similar presentations
Section 1.5 Special Points in Triangles
Advertisements

1 Relationships in Triangles Bisectors, Medians, and Altitudes Section 6.1 – 6.3 Students Should Begin Taking Notes At Screen 4!!
Warm up: Solve for x. Linear Pair 4x + 3 7x + 12 X = 15.
POINTS OF CONCURRENCY In this lesson we will define what a point of concurrency is. Then we will look at 4 points of concurrency in triangles. As you go.
Proving Centers of Triangles
Warm- up Type 2 writing and Construction Write your own definition and draw a picture of the following: Angle Bisector Perpendicular Bisector Draw an acute.
Points of Concurrency in Triangles Keystone Geometry
5-3 Concurrent Lines, Medians, Altitudes
Introduction Think about all the properties of triangles we have learned so far and all the constructions we are able to perform. What properties exist.
5.4 Medians and Altitudes A median of a triangle is a segment whose endpoints are a vertex and the midpoint of the opposite side. A triangle’s three medians.
Introduction Think about all the properties of triangles we have learned so far and all the constructions we are able to perform. What properties exist.
5.1 Bisectors, Medians, and Altitudes. Objectives Identify and use ┴ bisectors and  bisectors in ∆s Identify and use medians and altitudes in ∆s.
Lesson 5-1 Bisectors, Medians and Altitudes. Objectives Identify and use perpendicular bisectors and angle bisectors in triangles Identify and use medians.
Concurrent Lines Geometry Mrs. King Unit 4, Day 7.
Medians, Altitudes and Concurrent Lines Section 5-3.
TheoremIfThen If a segment joins the midpoints of two sides of a triangle, then the segment is parallel to the third side and is half the distance. D.
Geometry Unit 5: Triangle Parts.
introducing Chapter 5 Relationships with Triangles
5.3 - Concurrent Lines, Medians, and Altitudes
Lesson 5 – 2 Medians and Altitudes of Triangles
Chapter 5.3 Concurrent Lines, Medians, and Altitudes
Objectives To define, draw, and list characteristics of: Midsegments
5.3: Concurrent Lines, Medians and Altitudes Objectives: To identify properties of perpendicular bisectors and angle bisectors To identify properties of.
Unit 5 Notes Triangle Properties. Definitions Classify Triangles by Sides.
Median and Altitude of a Triangle Sec 5.3
Points of Concurrency Triangles.
Special Segments of Triangles
5-3 Bisectors in Triangles
Geometry B POINTS OF CONCURRENCY. The intersection of the perpendicular bisectors. CIRCUMCENTER.
Concurrencies for Medians, Altitudes, and Bisectors
Points of Concurrency The point where three or more lines intersect.
5.3: Concurrent Lines, Medians and Altitudes Objectives: Students will be able to… Identify properties of perpendicular bisectors and angle bisectors Identify.
Chapters 3.7 – 3.8 “Nothing in life is to be feared, it is only to be understood.” Marie Cure.
SPECIAL SEGMENTS OF TRIANGLES SECTIONS 5.2, 5.3, 5.4.
Homework Quiz. Warmup Need Graph Paper/Compass 5.3 Concurrent Lines, Medians, and Altitudes.
Geometry Sections 5.2 & 5.3 Points of Concurrency.
Medians, and Altitudes. When three or more lines intersect in one point, they are concurrent. The point at which they intersect is the point of concurrency.
Special lines in Triangles and their points of concurrency Perpendicular bisector of a triangle: is perpendicular to and intersects the side of a triangle.
Chapter 5: Relationships within Triangles 5.3 Concurrent Lines, Medians, and Altitudes.
Medians and Altitudes of Triangles
Bisectors, Medians, and Altitudes
5-4 Medians and Altitudes
Section 5 – 3 Concurrent Lines, Medians, and Altitudes
5-3 Concurrent Lines, Medians, and Altitudes
Chapter 5 Lesson 3 Objective: To identify properties of medians and altitudes of a triangle.
Medians, Altitudes and Perpendicular Bisectors
Lesson 14.3 The Concurrence Theorems
Special Segments in a Triangle
Triangle Centers Points of Concurrency
Please get a warm up and begin working
POINTS OF CONCURRENCY In this lesson we will define what a point of concurrency is. Then we will look at 4 points of concurrency in triangles. As you go.
A median of a triangle is a segment whose endpoints are
Introduction Think about all the properties of triangles we have learned so far and all the constructions we are able to perform. What properties exist.
You need your journal The next section in your journal is called special segments in triangles You have a short quiz.
Bisectors, Medians and Altitudes
4.8 Concurrent Lines.
5.4 Use Medians and Altitudes
Centroid Theorem By Mario rodriguez.
Section 5-3 Concurrent Lines, Medians, and Altitudes.
Points of Concurrency Lessons
5.3 Concurrent Lines, Medians, and Altitudes
Objectives: To define points of concurrency in triangles
Section 5.2.
Bisectors of a Triangle
A median of a triangle is a segment whose endpoints are
Point of Concurrency Definition: the point at which two or more lines, line segments or ray intersect. Picture:
Warm Up– in your notebook
Lesson 14.3 The Concurrence Theorems
POINTS OF CONCURRENCY In this lesson we will define what a point of concurrency is. Then we will look at 4 points of concurrency in triangles. As you go.
concurrency that we will be discussing today.
Presentation transcript:

POINTS OF CONCURRENCY In this lesson we will define what a point of concurrency is. Then we will look at 4 points of concurrency in triangles. As you go through the powerpoint, you will complete your notesheet. You will need to be able to define the 4 points of concurrency and identify them in a picture. You will also use the definition to identify relationships between Segments and angles to solve problems.

POINTS OF CONCURRENCY When two lines intersect at one point, we say that the lines are intersecting. The point at which they intersect is the point of intersection. (nothing new right?) Well, if three or more lines intersect, we say that the lines are concurrent. The point at which these lines intersect Is called the point of concurrency.

Perpendicular bisectors=Circumcenter The perpendicular bisectors of the sides of a triangle are concurrent at a point equidistant from the vertices. Point of concurrency

Perpendicular bisectors=Circumcenter This point of concurrency has a special name. It is known as the circumcenter of a triangle. Circumcenter

Perpendicular bisectors=Circumcenter The circumcenter is equidistant from all three vertices.

Perpendicular bisectors=Circumcenter The circumcenter gets its name because it is the center of the circle that circumscribes the triangle. Circumscribe means to be drawn around by touching as many points as possible.

Perpendicular bisectors=Circumcenter Sometimes the circumcenter will be inside the triangle, sometimes it will be on the triangle, and sometimes it will be outside of the triangle! Acute Right Obtuse

Angle bisectors=Incenter The bisectors of the angles of a triangle are concurrent at a point equidistant from the sides. Angle bisector

Angle bisectors=Incenter The point of concurrency of the three angle bisectors is another center of a triangle known as the Incenter. It is equidistant from the sides of the triangle, and gets its name from the fact that it is the center of the circle that is inscribed within the circle. Incenter

Medians=Centroid Median: A median of a triangle is the segment That connects a vertex to the midpoint of the opposite side.

Medians=Centroid This point of concurrency of the medians is another center of a triangle. It is known as the Centroid. Centroid

Medians=Centroid This Centroid is also the Center of Gravity of a triangle which means it is the point where a triangular shape will balance.

Centroid Centroid Centroid Theorem The point of concurrency of the medians of a triangle. Centroid Theorem The medians of a triangle intersect at a point called the centroid that is two thirds of the distance from each vertex to the midpoint of the opposite side.

Centroid… PK = 5 Find AP 10 x 2x BP = 12 Find PL. 6 JC = 15 PK + AP = AK JC = 15 Find JP. 5 PK + 2(PK) = AK

In triangle ABC, Q is the centroid and BE = 9 Find BQ Find QE BQ = 2(QE) = 3 OR 6 = 2(QE) 3 = QE

In triangle ABC, Q is the centroid and FC = 15 Find FQ Find QC = 5 QC = 2(FQ) QC = 10 QC = 2(5)

Altitudes=Orthocenter Altitudes of a triangle are the perpendicular segments from the vertices to the line containing the opposite side. Unlike medians, and angle bisectors that are always inside a triangle, altitudes can be inside, on or outside the triangle.

Altitudes=Orthocenter This point of concurrency of the altitudes of a triangle form another center of triangles. This center is known as the Orthocenter. The Orthocenter of a triangle can be inside on or outside of the triangle.

Find the orthocenter The vertices of triangle FGH are F(-2, 4), G(4,4), and H(1, -2). Find the coordinates of the orthocenter of triangle FGH. Graph the points. Cont…

Find an equation from F to GH. Slope of GH. m = 2 New equation is perpendicular to segment GH. Point F (-2, 4) m = -1/2 y = mx + b 3 = b Cont…

Find an equation from G to FH. Slope of segment FH m = -2 New equation is perpendicular to segment FH. Point G (4, 4) m = 1/2 2 = b Cont…

The orthocenter can be found at the intersection of our 2 new equations. How can we find the orthocenter? If the orthocenter lies on an exact point of the graph use the graph to name. If it does not lie on a point use systems of equations to find the orthocenter. System of equations: Cont…

By substitution. Orthocenter (1, 2.5) 1 = x y = 2.5

POINTS OF CONCURRENCY There are many Points of Concurrency in Triangle. We have only looked at four: Circumcenter: Where the perpendicular bisectors meet Incenter: Where the angle bisectors meet Centroid: Where the medians meet Orthocenter: Where the altitudes meet.

Practice Problems On the half sheet of paper that you were given complete the following problems. 1A-C Identify the point of concurrency that is shown in the triangle B C A

Practice Problems Solve for x, y in each triangle using the given information 2. Point G is a centroid AC = 24, AF=15, AE= 3x-6, BF = 3y 3. Point H is an orthocenter <ABE = 25, <BFC = 8x + 10, <BAE= 6y+5

Practice Problems 4. Point W is both a centroid and an orthocenter. Why is it a circumcenter also? 5. If you draw two medians, is that enough to determine where the centroid of a triangle is? Why/Why not? 6. Do the following matching. Circumcenter W. Angle bisectors Incenter X. Medians Orthocenter Y. Perpendicular bisectors Centroid Z. Altitudes