第四部分 基于逻辑的规划方法.

Slides:



Advertisements
Similar presentations
CSE391 – 2005 NLP 1 Planning The Planning problem Planning with State-space search.
Advertisements

Planning Module THREE: Planning, Production Systems,Expert Systems, Uncertainty Dr M M Awais.
Planning Module THREE: Planning, Production Systems,Expert Systems, Uncertainty Dr M M Awais.
Situation Calculus for Action Descriptions We talked about STRIPS representations for actions. Another common representation is called the Situation Calculus.
Computing & Information Sciences Kansas State University Lecture 20 of 42 CIS 530 / 730 Artificial Intelligence Lecture 20 of 42 Introduction to Classical.
Software Engineering 2007/2008 Chapter 2 Modeling the Process and Life Cycle.
All rights reserved ©L. Manevitz Lecture 61 Artificial Intelligence Planning System L. Manevitz.
Sussman anomaly - analysis The start state is given by: ON(C, A) ONTABLE(A) ONTABLE(B) ARMEMPTY The goal by: ON(A,B) ON(B,C) This immediately leads to.
Artificial Intelligence 2005/06
Planning Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 11.
Artificial Intelligence Chapter 11: Planning
Constraint Logic Programming Ryan Kinworthy. Overview Introduction Logic Programming LP as a constraint programming language Constraint Logic Programming.
编译程序 构造原理和实现技术 授课教师:吕江花. 第一章 编译程序概述 主要内容: 几个基本概念 编译器的工作过程概述 编译器各个阶段的功能描述 编译程序的实现途径.
两极异步电动机示意图 (图中气隙磁场形象地 用 N 、 S 来表示) 定子接三相电源上,绕组中流过三相对称电流,气 隙中建立基波旋转磁动势,产生基波旋转磁场,转速 为同步速 : 三相异步电动机的简单工作原理 电动机运行时的基本电磁过程: 这个同步速的气隙磁场切割 转子绕组,产生感应电动势并在 转子绕组中产生相应的电流;
1 Planning. R. Dearden 2007/8 Exam Format  4 questions You must do all questions There is choice within some of the questions  Learning Outcomes: 1.Explain.
Harris Spring 2005 讲座一 “ERP 与企业流程再造 ” 东南大学 自控系 赵霁教授 电话: 一 ERP 是什么? 二企业为什么要引入 ERP 系统? 三企业管理软件的发展与 ERP 的创新之处 四 ERP 与流程再造的关系。 五 企业流程再造规划分析。
1 Lecture 12 example (from slides prepared by Prof. J. Rosenchein)
第十一章 曲线回归 第一节 曲线的类型与特点 第二节 曲线方程的配置 第三节 多项式回归.
Network Design 第一章 概述 中国科学技术大学网络学院 李艺
线性代数习题课 吉林大学 术洪亮 第一讲 行 列 式 前面我们已经学习了关 于行列式的概念和一些基本 理论,其主要内容可概括为:
Artificial Intelligence 2005/06 Planning: STRIPS.
量 子 力 学 开启微观领域的钥匙. 一、量子力学是什么? 量子力学:反映微观粒子 ( 分子、 原子、原子核、基本粒子等 ) 运动 规律的理论。 研究对象:微观粒子,大致分子 数量级,如分子、原子、原子核、 基本粒子等。
量子化学 第四章 角动量与自旋 (Angular momentum and spin) 4.1 动量算符 4.2 角动量阶梯算符方法
第一节 相图基本知识 1 三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
第二章 处理器管理 南通大学电子信息学院 2010 年 9 月. 第二章 处理器管理 2.1 中央处理器 2.2 中断技术 2.3 进程及其实现 2.4 线程及其实现 2.5 Linux 进程和线程 2.6 Windows 2003 进程和线程 2.7 处理器调度 2.8 作业的管理与调度 2.9.
1 地 理 信 息 系 统 —— 专业必修课程 西南大学地理科学学院 田永中 ,
第五部分 行政责任和行政救济 第一节 行政违法 一、行政违法的概念和特征 (一)行政违法的概念 (二)行政违法的特征 二、行政违法的构成要件 三、行政违法的分类.
编译原理总结. 基本概念  编译器 、解释器  编译过程 、各过程的功能  编译器在程序执行过程中的作用  编译器的实现途径.
AI Principles, Lecture on Planning Planning Jeremy Wyatt.
Planning II CSE 573. © Daniel S. Weld 2 Logistics Reading for Wed Ch 18 thru 18.3 Office Hours No Office Hour Today.
Course Introduction Programming Language(Using Java)
首 页 首 页 上一页 下一页 本讲内容本讲内容 视图,剖视图(Ⅰ) 复习: P107 ~ P115 作业: P48(6-2,6-4), P49( 去 6-6) P50, P51(6-13), P52 P50, P51(6-13), P52 P53 (6-18,6-20) P53 (6-18,6-20)
22/11/04 AIPP Lecture 16: More Planning and Operators1 More Planning Artificial Intelligence Programming in Prolog.
Structure & Interpretation of Computer Programs Xiao Ben Charrow.
Planning (Chapter 10)
Artificial Intelligence Chapter 22 Planning Biointelligence Lab School of Computer Sci. & Eng. Seoul National University.
CPS 270: Artificial Intelligence Planning Instructor: Vincent Conitzer.
项目七: PLC 功能指令应用 带进位循环左移指令 XXXXX. 项目七: PLC 功能指令应用 FX2 系列可编程控制器移位控制指令有移位、循环移位、字移位 及先进先出 FIFO 指令等 10 条指令。 带进位循环右移指令 RCR 带进位循环左移指令 RCL 字右移位指令 WSFR 先入先出读出指令.
1 物体转动惯量的测量 南昌大学理学院
Planning (Chapter 10)
第四章 數學分析. 常用句型 Consider the case in which A is equal to B. As an example, consider the case in which A=B. Let us now consider the case in which A=B. We.
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
AI Lecture 17 Planning Noémie Elhadad (substituting for Prof. McKeown)
说课流程 教学过程教学过程 说教具说教具 说学法说学法 说教法说教法 学情分析学情分析 说教材说教材.
Intro to Planning Or, how to represent the planning problem in logic.
Summary of Curved Solids 曲曲曲曲 面面面面 立立立立 体体体体 概概概概 述述述述 Right Cylinder 圆圆圆圆 柱柱柱柱 体体体体 Cone 圆圆圆圆 锥锥锥锥 体体体体 Sphere 圆圆圆圆 球球球球 体体体体Exercise 练练练练 习习习习 题题题题.
Notes 9: Planning; Strips Planning Systems ICS 270a Spring 2003.
Planning I: Total Order Planners Sections
欢 迎 使 用 《工程流体力学》 多媒体授课系统 燕 山 大 学 《工程流体力学》课程组. 第九章 缝隙流动 概述 9.1 两固定平板间的层流流动 9.2 具有相对运动的两平行平板 间的缝隙流动 9.3 环形缝隙中的层流流动.
1 Model Checking E. M. Clarke, O. Grumberg, D. A. Peled.
1 Chapter4 Partitioning and Divide-and-Conquer Strategies 划分和分治的并行技术 Lecture 5.
§9. 恒定电流场 第一章 静电场 恒定电流场. 电流强度  电流:电荷的定向移动  正负电荷反方向运动产生的电磁效应相同 ( 霍尔效应 特例 ) 规定正电荷流动的方向为正方向  电流方向:正方向、反方向  电流强度 ( 电流 ) A 安培 标量 单位时间通过某一截面的电荷.
SME.USTB Human Factors 人机工程学 By Wei Dong Department of Industry Design, SME, USTB.
递归算法的效率分析. When a function is called... A transfer of control occurs from the calling block to the code of the function --It is necessary that there be.
SNS College of Engineering Department of Computer Science and Engineering AI Planning Presented By S.Yamuna AP/CSE 5/23/2018 AI.
Planning (Chapter 10) Slides by Svetlana Lazebnik, 9/2016 with modifications by Mark Hasegawa-Johnson, 9/2017
The Propositional Calculus
Planning (Chapter 10)
Introduction Contents Sungwook Yoon, Postdoctoral Research Associate
Planning (Chapter 10)
Introduction Defining the Problem as a State Space Search.
Consider the task get milk, bananas, and a cordless drill
Planning José Luis Ambite.
Planning CSE 573 A handful of GENERAL SEARCH TECHNIQUES lie at the heart of practically all work in AI We will encounter the SAME PRINCIPLES again and.
L11. Planning Agents and STRIPS
Class #20 – Wednesday, November 5
时序电路 Digital Circuits 刘鹏 浙江大学信息与电子工程系 信息与通信工程研究所
L9. STRIPS Examples Recursive STRIPS Block world
Two – One Problem Legal Moves: Slide Rules: 1s’ move right Hop
Two – One Problem Legal Moves: Slide Rules: 1s’ move right Hop
Presentation transcript:

第四部分 基于逻辑的规划方法

第2 2章规划

22.1 STRIPS规划系统 22.1.1 描述状态和目标 22.1.2 向前搜索方法

22.1.3 递归S T R I P S Divide-and-conquer: a heuristic in forward search divide the search space into islands islands: a state description in which one of the conjuncts is satisfied STRIPS(): a procedure to solve a conjunctive goal formula .

22.1.4 带有运行时条件的计划 e.g. wff On(B,A) V On(B,C) Needed when we generalize the kinds of formulas allowed in state descriptions. e.g. wff On(B,A) V On(B,C) branching The system does not know which plan is being generated at the time. The planning process splits into as many branches as there are disjuncts that might satisfy operator preconditions. runtime conditionals Then, at run time when the system encounters a split into two or more contexts, perceptual processes determine which of the disjuncts is true. e.g. the runtime conditionals here is “know which is true at the time”

22.1.5 Sussman异常 目标条件是O n(A, B) ∧O n(B, C),

The Sussman 异常 e.g. STRIPS selection: On(A,B)On(B,C)On(A,B)… Difficult to solve with recursive STRIPS (similar to DFS) Solution: BFS BFS: computationally infeasible  “BFS+Backward Search Methods” goal condition: On(A,B)  On(B,C) Figure 22.4 A B C

22.3 层次规划 22.3.1 ABSTRIPS

ABSTRIPS Assigns criticality numbers to each conjunct in each precondition of a STRIPS rule. The easier it is to achieve a conjunct (all other things being equal), the lower is its criticality number. ABSTRIPS planning procedure in levels 1. Assume all preconditions of criticality less than some threshold value are already true, and develop a plan based on that assumption. Here we are essentially postponing the achievement of all but the hardest conjuncts. 2. Lower the criticality threshold by 1, and using the plan developed in step 1 as a guide, develop a plan that assumes that preconditions of criticality lower than the threshold are true. 3. And so on.

An example of ABSTRIPS goto(R1,d,r2): rules which models the action schema of taking the robot from room r1, through door d, to room r2. open(d): open door d. n : criticality numbers of the preconditions Figure 22.16 A Planning Problem for ABSTRIPS

Combining Hierarchical and Partial-Order Planning NOAH, SIPE, O-PLAN “Articulation” articulate abstract plans into ones at a lower level of detail Figure 22.17 Articulating a Plan

22.4 Learning Plans

Learning Plans (1/3) learning new STRIPS rules consisting of a sequence of already existing STRIPS rules Figure 22.18 Unstacking Two Blocks

Learning Plans (2/3) Figure 22.19 A Triangle Table for Block Unstacking

Learning Plans (3/3) Figure 22.20 A Triangle-Table Schema for Block Unstacking