Graphs 10/24/2017 6:47 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.

Slides:



Advertisements
Similar presentations
© 2004 Goodrich, Tamassia Breadth-First Search1 CB A E D L0L0 L1L1 F L2L2.
Advertisements

Shortest Paths1 C B A E D F
© 2004 Goodrich, Tamassia Graphs1 ORD DFW SFO LAX
Breadth-First Search1 Part-H3 Breadth-First Search CB A E D L0L0 L1L1 F L2L2.
1 Graphs ORD DFW SFO LAX Many slides taken from Goodrich, Tamassia 2004.
© 2004 Goodrich, Tamassia Depth-First Search1 DB A C E.
1 Graphs: Concepts, Representation, and Traversal CSC401 – Analysis of Algorithms Lecture Notes 13 Graphs: Concepts, Representation, and Traversal Objectives:
Graphs1 Part-H1 Graphs ORD DFW SFO LAX
© 2004 Goodrich, Tamassia Shortest Paths1 Shortest Paths (§ 13.6) Given a weighted graph and two vertices u and v, we want to find a path of minimum total.
Graphs1 ORD DFW SFO LAX Graphs2 Outline and Reading Graphs (§6.1) Definition Applications Terminology Properties ADT Data structures.
Graphs1 ORD DFW SFO LAX Graphs2 Outline and Reading Graphs (§6.1) Definition Applications Terminology Properties ADT Data structures.
Shortest Paths1 C B A E D F
CSC311: Data Structures 1 Chapter 13: Graphs I Objectives: Graph ADT: Operations Graph Implementation: Data structures Graph Traversals: DFS and BFS Directed.
© 2004 Goodrich, Tamassia Shortest Paths1 C B A E D F
Weighted Graphs In a weighted graph, each edge has an associated numerical value, called the weight of the edge Edge weights may represent, distances,
© 2010 Goodrich, Tamassia Shortest Paths1 C B A E D F
Shortest Paths C B A E D F
Graphs – ADTs and Implementations ORD DFW SFO LAX
Graphs Part 1. Outline and Reading Graphs (§13.1) – Definition – Applications – Terminology – Properties – ADT Data structures for graphs (§13.2) – Edge.
Graphs. Data Structure for Graphs. Graph Traversals. Directed Graphs. Shortest Paths. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013.
Spring 2007Graphs1 ORD DFW SFO LAX
GRAPHS 1. Outline 2  Undirected Graphs and Directed Graphs  Depth-First Search  Breadth-First Search.
1 prepared from lecture material © 2004 Goodrich & Tamassia COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING This material.
Graphs Quebec Toronto Montreal Ottawa 449 km 255 km 200 km 545 km Winnipeg 2075 km 2048 km New York 596 km 790 km 709 km.
© 2010 Goodrich, Tamassia Shortest Paths1 C B A E D F
Graphs ORD SFO LAX DFW Graphs 1 Graphs Graphs
Breadth-First Search L0 L1 L2
Shortest Paths C B A E D F Shortest Paths
14 Graph Algorithms Hongfei Yan June 8, 2016.
Graphs.
Graphs 5/14/ :46 PM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Shortest Paths C B A E D F Shortest Paths
Shortest Path 6/18/2018 4:22 PM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
Shortest Paths C B A E D F Shortest Paths 1
Graphs 7/18/2018 7:39 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Searching Graphs ORD SFO LAX DFW Spring 2007
Breadth-First Search L0 L1 L2 C B A E D F Breadth-First Search
Breadth-First Search L0 L1 L2
Graphs ORD SFO LAX DFW Graphs Graphs
COMP9024: Data Structures and Algorithms
Graphs ORD SFO LAX DFW Graphs Graphs
COMP9024: Data Structures and Algorithms
Shortest Paths C B A E D F Shortest Paths
Chapter 14 Graph Algorithms
Shortest Paths C B A E D F Shortest Paths
Shortest Paths C B A E D F
Graphs Part 1.
Graphs ORD SFO LAX DFW Graphs Graphs
Graphs.
Graphs.
Breadth-First Search L0 L1 L2 C B A E D F Breadth-First Search
Depth-First Search D B A C E Depth-First Search Depth-First Search
Breadth-First Search L0 L1 L2 C B A E D F Breadth-First Search
Depth-First Search D B A C E Depth-First Search Depth-First Search
Graphs ORD SFO LAX DFW Graphs Graphs
Shortest Paths C B A E D F Shortest Paths
Graphs CSE 2011 Winter November 2018.
Shortest Paths C B A E D F Shortest Paths
Chapter 13 Graph Algorithms
Graphs ORD SFO LAX DFW Graphs Graphs
Graphs ORD SFO LAX DFW Graphs Graphs
Graphs 4/29/15 01:28:20 PM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
Searching Graphs ORD SFO LAX DFW Spring 2007
Graphs Part 1 ORD SFO LAX DFW
Depth-First Search D B A C E 4/13/2019 5:23 AM Depth-First Search
Graphs ORD SFO LAX DFW /15/ :57 AM
Shortest Paths.
Breadth-First Search L0 L1 L2 C B A E D F 4/25/2019 3:12 AM
Breadth-First Search L0 L1 L2 C B A E D F 5/14/ :22 AM
Breadth-First Search L0 L1 L2 C B A E D F 7/28/2019 1:03 PM
Presentation transcript:

Graphs 10/24/2017 6:47 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014 Graphs 1843 ORD SFO 802 1743 337 LAX 1233 DFW Graphs

Graphs PVD ORD SFO LGA HNL LAX DFW MIA A graph is a pair (V, E), where V is a set of nodes, called vertices E is a collection of pairs of vertices, called edges Vertices and edges are positions and store elements Example: A vertex represents an airport and stores the three-letter airport code An edge represents a flight route between two airports and stores the mileage of the route 849 PVD 1843 ORD 142 SFO 802 LGA 1743 337 1387 HNL 2555 1099 LAX 1233 DFW 1120 MIA Graphs

Edge Types flight AA 1206 ORD PVD 849 miles ORD PVD Directed edge ordered pair of vertices (u,v) first vertex u is the origin second vertex v is the destination e.g., a flight Undirected edge unordered pair of vertices (u,v) e.g., a flight route Directed graph all the edges are directed e.g., route network Undirected graph all the edges are undirected e.g., flight network flight AA 1206 ORD PVD 849 miles ORD PVD Graphs

Applications Electronic circuits Transportation networks Printed circuit board Integrated circuit Transportation networks Highway network Flight network Computer networks Local area network Internet Web Databases Entity-relationship diagram Graphs

Terminology X U V W Z Y a c b e d f g h i j End vertices (or endpoints) of an edge U and V are the endpoints of a Edges incident on a vertex a, d, and b are incident on V Adjacent vertices U and V are adjacent Degree of a vertex X has degree 5 Parallel edges h and i are parallel edges Self-loop j is a self-loop X U V W Z Y a c b e d f g h i j Graphs

Terminology (cont.) V a b P1 d U X Z P2 h c e W g f Y Path Simple path sequence of alternating vertices and edges begins with a vertex ends with a vertex each edge is preceded and followed by its endpoints Simple path path such that all its vertices and edges are distinct Examples P1=(V,b,X,h,Z) is a simple path P2=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple V a b P1 d U X Z P2 h c e W g f Y Graphs

Terminology (cont.) V a b d U X Z C2 h e C1 c W g f Y Cycle circular sequence of alternating vertices and edges each edge is preceded and followed by its endpoints Simple cycle cycle such that all its vertices and edges are distinct Examples C1=(V,b,X,g,Y,f,W,c,U,a,) is a simple cycle C2=(U,c,W,e,X,g,Y,f,W,d,V,a,) is a cycle that is not simple V a b d U X Z C2 h e C1 c W g f Y Graphs

Properties Sv deg(v) = 2m Property 1 Property 2 Proof: each edge is counted twice Property 2 In an undirected graph with no self-loops and no multiple edges m  n (n - 1)/2 Proof: each vertex has degree at most (n - 1) What is the bound for a directed graph? Notation n number of vertices m number of edges deg(v) degree of vertex v Example n = 4 m = 6 deg(v) = 3 Graphs

Vertices and Edges A graph is a collection of vertices and edges. We model the abstraction as a combination of three data types: Vertex, Edge, and Graph. A Vertex is a lightweight object that stores an arbitrary element provided by the user (e.g., an airport code) We assume it supports a method, element(), to retrieve the stored element. An Edge stores an associated object (e.g., a flight number, travel distance, cost), retrieved with the element( ) method. Graphs

Graph ADT Graphs

Edge List Structure Vertex object Edge object Vertex sequence element reference to position in vertex sequence Edge object origin vertex object destination vertex object reference to position in edge sequence Vertex sequence sequence of vertex objects Edge sequence sequence of edge objects Graphs

Adjacency List Structure Incidence sequence for each vertex sequence of references to edge objects of incident edges Augmented edge objects references to associated positions in incidence sequences of end vertices Graphs

Adjacency Matrix Structure Edge list structure Augmented vertex objects Integer key (index) associated with vertex 2D-array adjacency array Reference to edge object for adjacent vertices Null for non nonadjacent vertices The “old fashioned” version just has 0 for no edge and 1 for edge Graphs

Performance Edge List Adjacency List Adjacency Matrix Space n + m n2 n vertices, m edges no parallel edges no self-loops Edge List Adjacency List Adjacency Matrix Space n + m n2 incidentEdges(v) m deg(v) n areAdjacent (v, w) min(deg(v), deg(w)) 1 insertVertex(o) insertEdge(v, w, o) removeVertex(v) removeEdge(e) Graphs

Depth-First Search 10/24/2017 6:47 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014 Depth-First Search D B A C E Depth-First Search

Subgraphs A subgraph S of a graph G is a graph such that The vertices of S are a subset of the vertices of G The edges of S are a subset of the edges of G A spanning subgraph of G is a subgraph that contains all the vertices of G Subgraph Spanning subgraph Depth-First Search

Non connected graph with two connected components Connectivity A graph is connected if there is a path between every pair of vertices A connected component of a graph G is a maximal connected subgraph of G Connected graph Non connected graph with two connected components Depth-First Search

Trees and Forests A (free) tree is an undirected graph T such that T is connected T has no cycles This definition of tree is different from the one of a rooted tree A forest is an undirected graph without cycles The connected components of a forest are trees Tree Forest Depth-First Search

Spanning Trees and Forests A spanning tree of a connected graph is a spanning subgraph that is a tree A spanning tree is not unique unless the graph is a tree Spanning trees have applications to the design of communication networks A spanning forest of a graph is a spanning subgraph that is a forest Graph Spanning tree Depth-First Search

Depth-First Search Depth-first search (DFS) is a general technique for traversing a graph A DFS traversal of a graph G Visits all the vertices and edges of G Determines whether G is connected Computes the connected components of G Computes a spanning forest of G DFS on a graph with n vertices and m edges takes O(n + m ) time DFS can be further extended to solve other graph problems Find and report a path between two given vertices Find a cycle in the graph Depth-first search is to graphs what Euler tour is to binary trees Depth-First Search

DFS Algorithm from a Vertex Depth-First Search

DFS for an Entire Graph The algorithm uses a mechanism for setting and getting “labels” of vertices and edges Algorithm DFS(G, v) Input graph G and a start vertex v of G Output labeling of the edges of G in the connected component of v as discovery edges and back edges setLabel(v, VISITED) for all e  G.incidentEdges(v) if getLabel(e) = UNEXPLORED w  opposite(v,e) if getLabel(w) = UNEXPLORED setLabel(e, DISCOVERY) DFS(G, w) else setLabel(e, BACK) Algorithm DFS(G) Input graph G Output labeling of the edges of G as discovery edges and back edges for all u  G.vertices() setLabel(u, UNEXPLORED) for all e  G.edges() setLabel(e, UNEXPLORED) for all v  G.vertices() if getLabel(v) = UNEXPLORED DFS(G, v) Depth-First Search

Example unexplored vertex visited vertex unexplored edge B A C E A A visited vertex unexplored edge discovery edge back edge D B A C E D B A C E Depth-First Search

Example (cont.) D B A C E D B A C E D B A C E D B A C E Depth-First Search

Breadth-First Search L0 L1 L2 10/24/2017 6:47 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014 Breadth-First Search C B A E D L0 L1 F L2 Breadth-First Search

Breadth-First Search Breadth-first search (BFS) is a general technique for traversing a graph A BFS traversal of a graph G Visits all the vertices and edges of G Determines whether G is connected Computes the connected components of G Computes a spanning forest of G BFS on a graph with n vertices and m edges takes O(n + m ) time BFS can be further extended to solve other graph problems Find and report a path with the minimum number of edges between two given vertices Find a simple cycle, if there is one Breadth-First Search

BFS Algorithm Algorithm BFS(G, s) L0  new empty sequence L0.addLast(s) setLabel(s, VISITED) i  0 while Li.isEmpty() Li +1  new empty sequence for all v  Li.elements() for all e  G.incidentEdges(v) if getLabel(e) = UNEXPLORED w  opposite(v,e) if getLabel(w) = UNEXPLORED setLabel(e, DISCOVERY) setLabel(w, VISITED) Li +1.addLast(w) else setLabel(e, CROSS) i  i +1 The algorithm uses a mechanism for setting and getting “labels” of vertices and edges Algorithm BFS(G) Input graph G Output labeling of the edges and partition of the vertices of G for all u  G.vertices() setLabel(u, UNEXPLORED) for all e  G.edges() setLabel(e, UNEXPLORED) for all v  G.vertices() if getLabel(v) = UNEXPLORED BFS(G, v) Breadth-First Search

Example unexplored vertex visited vertex unexplored edge C B A E D L0 L1 F A unexplored vertex A visited vertex unexplored edge discovery edge cross edge L0 L0 A A L1 L1 B C D B C D E F E F Breadth-First Search

Example (cont.) L0 L1 L0 L1 L2 L0 L1 L2 L0 L1 L2 C B A E D F C B A E D Breadth-First Search

Example (cont.) L0 L1 L2 L0 L1 L2 L0 L1 L2 C B A E D F A B C D E F C B Breadth-First Search

Analysis Setting/getting a vertex/edge label takes O(1) time Each vertex is labeled twice once as UNEXPLORED once as VISITED Each edge is labeled twice once as DISCOVERY or CROSS Each vertex is inserted once into a sequence Li Method incidentEdges is called once for each vertex BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure Recall that Sv deg(v) = 2m Breadth-First Search

DFS vs. BFS Applications DFS BFS DFS BFS Spanning forest, connected components, paths, cycles  Shortest paths Biconnected components C B A E D L0 L1 F L2 A B C D E F DFS BFS Breadth-First Search

DFS vs. BFS (cont.) Back edge (v,w) Cross edge (v,w) DFS BFS w is an ancestor of v in the tree of discovery edges Cross edge (v,w) w is in the same level as v or in the next level C B A E D L0 L1 F L2 A B C D E F DFS BFS Breadth-First Search

Shortest Path 10/24/2017 6:47 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014 Shortest Paths C B A E D F 3 2 8 5 4 7 1 9 Shortest Paths

Weighted Graphs PVD ORD SFO LGA HNL LAX DFW MIA In a weighted graph, each edge has an associated numerical value, called the weight of the edge Edge weights may represent, distances, costs, etc. Example: In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports 849 PVD 1843 ORD 142 SFO 802 LGA 1743 1205 337 1387 HNL 2555 1099 LAX 1233 DFW 1120 MIA Shortest Paths

Shortest Paths PVD ORD SFO LGA HNL LAX DFW MIA Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between u and v. Length of a path is the sum of the weights of its edges. Example: Shortest path between Providence and Honolulu Applications Internet packet routing Flight reservations Driving directions 849 PVD 1843 ORD 142 SFO 802 LGA 1743 1205 337 1387 HNL 2555 1099 LAX 1233 DFW 1120 MIA Shortest Paths

Shortest Path Properties Property 1: A subpath of a shortest path is itself a shortest path Property 2: There is a tree of shortest paths from a start vertex to all the other vertices Example: Tree of shortest paths from Providence 849 PVD 1843 ORD 142 SFO 802 LGA 1743 1205 337 1387 HNL 2555 1099 LAX 1233 DFW 1120 MIA Shortest Paths

Dijkstra’s Algorithm The distance of a vertex v from a vertex s is the length of a shortest path between s and v Dijkstra’s algorithm computes the distances of all the vertices from a given start vertex s Assumptions: the graph is connected the edges are undirected the edge weights are nonnegative We grow a “cloud” of vertices, beginning with s and eventually covering all the vertices We store with each vertex v a label d(v) representing the distance of v from s in the subgraph consisting of the cloud and its adjacent vertices At each step We add to the cloud the vertex u outside the cloud with the smallest distance label, d(u) We update the labels of the vertices adjacent to u Shortest Paths

Edge Relaxation Consider an edge e = (u,z) such that d(z) = 75 u is the vertex most recently added to the cloud z is not in the cloud The relaxation of edge e updates distance d(z) as follows: d(z)  min{d(z),d(u) + weight(e)} d(u) = 50 10 d(z) = 75 e u s z d(u) = 50 10 d(z) = 60 u e s z Shortest Paths

Example C B A E D F 3 2 8 5 4 7 1 9 A 4 8 2 8 2 4 7 1 B C D 3 9   2 5 E F A 4 A 4 8 8 2 2 8 2 3 7 2 3 7 1 7 1 B C D B C D 3 9 3 9 5 11 5 8 2 5 2 5 E F E F Shortest Paths

Example (cont.) A 4 8 2 7 2 3 7 1 B C D 3 9 5 8 2 5 E F A 4 8 2 7 2 3 A 4 8 2 7 2 3 7 1 B C D 3 9 5 8 2 5 E F A 4 8 2 7 2 3 7 1 B C D 3 9 5 8 2 5 E F Shortest Paths

Dijkstra’s Algorithm

Analysis of Dijkstra’s Algorithm Graph operations We find all the incident edges once for each vertex Label operations We set/get the distance and locator labels of vertex z O(deg(z)) times Setting/getting a label takes O(1) time Priority queue operations Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes O(log n) time The key of a vertex in the priority queue is modified at most deg(w) times, where each key change takes O(log n) time Dijkstra’s algorithm runs in O((n + m) log n) time provided the graph is represented by the adjacency list/map structure Recall that Sv deg(v) = 2m The running time can also be expressed as O(m log n) since the graph is connected Shortest Paths