Installation of the waveguides between MB T0#2 and DB T0#2

Slides:



Advertisements
Similar presentations
Abstract Mechanical Inspection and Survey Steven Seiler, NSLS-II Project The Survey and Alignment Group is often the first and last to work with the Storage.
Advertisements

Figure 1 ; Video File. Figure 2 : Anatomical orthogonal coordinate system Z Y +RY : Left Axial Rotation -RY: Right Axial Rotation +RZ : Right Lateral.
, CLIC Test Module Meeting Status of the DB Quad adjustable support design Mateusz Sosin CLIC Module WG Meeting, 22-May-2013.
Alignment of DB and MB quadrupoles Hélène MAINAUD DURAND 17/11/2011 With a lot of input from Sylvain GRIFFET.
DFG-Research Unit “Earth rotation and Global Dynamic processes” Poznan, 13 – 17 October 2008 N. Panafidina, M. Rothacher, D. Thaller Comparison and Combination.
Elementary 3D Transformations - a "Graphics Engine" Transformation procedures Transformations of coordinate systems Translation Scaling Rotation.
Robert Ruland Intra Girder Assembly and Alignment - October 20, 2005 Internal LCLS Undulator Alignment and Motion Review 1 Intra.
Pre-alignment solutions applied to girders 1/19 Sylvain GRIFFET, 06/07/2010.
Influence of the Gravity, Vacuum and RF on CLIC Module T0 Behavior R. Raatikainen.
1/9 Hélène Mainaud Durand Sylvain GRIFFET, 28/11/2011 BE/ABP-SU/ Adjustment of 4 Drive Beam Quads positions on TM0 CLIC girders EDMS Document No
Installation of FD in September A.Jeremie, B.Bolzon, N.Geffroy, G.Gaillard, J.P.Baud, F.Peltier With the help of KEK, SLAC, KNU and CERN colleagues For.
AIDA Infrastructure for very forward calorimeters Design proposal Mechanical support structure Designers:In collaboration with: Eric DavidFrancois-Xavier.
, CLIC Test Module Meeting Concept of ‘hexapod type’ DB Quad adjustable support Mateusz Sosin.
Measurement report of Boostec girders 1/13 Sylvain GRIFFET, 15/11/2010 Measurements performed on the 28th of October 2010 with the Laser Tracker LTD500.
H. MAINAUD DURAND, on behalf of the CLIC active pre-alignment team CLIC ACTIVE PRE-ALIGNMENT STUDIES: STATUS FOR CDR AND PROSPECTS FOR TDR PHASE.
CLIC alignment studies OUTLINE CLEX Alignment of the components Impact of beam on sensors readings Long term stability of the supports (girders, DB quad)
Muon alignment with Cosmics: Real and Monte Carlo data S.Vecchi, S.Pozzi INFN Ferrara 37th Software Week CERN June 2009.
H. MAINAUD DURAND, on behalf of the CLIC active pre-alignment team MDI alignment plans IWLC2010 International Workshop on Linear Colliders 2010.
1/12 Sylvain GRIFFET, 17/10/2011 BE/ABP-SU/ Simulations of laser tracker AT401 measurements on TM0 CLIC girders EDMS Document No
06-November-2013 Thermo-Mechanical Tests BE-RF-PM Review of the CLIC Two-Beam Module Program Thermo-Mechanical Tests L. Kortelainen, I. Kossyvakis, R.
1 Updates on thermal tests Updates on thermal tests F. Rossi September 5, 2012.
BEPCII Prealignment Installation Survey and Alignment Accelerator Center of IHEP Xiaolong Wang
DBQ support – motorization and performance upgrade Mateusz Sosin EN/MEF-SU.
Geometrical Transformations 2 Adapted from Fundamentals of Interactive Computer Graphics, Foley and van Dam, pp , by Geb Thomas.
White Table Tops Text Books & Work Books. Mechanical Engineering Linking in Technical Objects Guiding Controls.
Dmitry Gudkov BE-RF-PM CLIC Module Working Group Engineering design of the adjustable supporting system for DBQ.
18/04/12 Arnaud ACKER Mechanical Analysis of RF Network 1/14 CLIC Two-Beam Module type 0.RF Network. Drive-Beam Main-Beam.
Short range alignment strategy in CLEX and first results CLIC Workshop January 2015 on behalf of : Hélène Mainaud-Durand, Mateusz Sosin Mathieu.
The CLIC alignment studies 1 CLIC workshop October 2007 THE CLIC ALIGNMENT STUDIES Hélène MAINAUD DURAND.
CLIC Module WG 20/07/2009 H. MAINAUD DURAND, BE-ABP/SU Pre-alignment system and impact on module design.
Survey, Alignment and Metrology Fiducials Requirements Fabien Rey ESS Survey, Alignment and Metrology Group ACCELERATOR TECHNICAL BOARD 23/09/2015.
CLIC two-beam modules TEST modules final schemes Dmitry Gudkov BE/RF CLIC Module Working Group.
CLIC Beam Physics Working Group CLIC pre-alignment simulations Thomas Touzé BE/ABP-SU Update on the simulations of the CLIC pre-alignment.
1 Thermal tests planning for mock-up TM0 Thermal tests planning for CLIC prototype module type 0 July 17,
CLIC module Experimental program for module array Module review, June 22 nd 2015Elena Daskalaki, BE-RF-MK.
Fiducialisation and initial alignment of components for CLIC Mateusz Sosin on behalf of the CLIC active pre-alignment team CLIC Workshop 2015.
cern.ch CLIC MEETING (17-Dec-2010) CLIC TWO-BEAM MODULE LAYOUT (short introduction) BE / RF 1.
Chris Parkes, Silvia Borghi, Christoph Hombach WP2 Alignment Task: Status Report Introduction Alignment Monitoring – LHCb VELO Weak Modes – LHCb VELO AIDA.
Peak temperature rise specification for accelerating structures: a review and discussion CLIC meeting
Jean-Christophe Gayde CERN-EST/SUEDMS Id: Juin 2003 ATLAS TILE CALORIMETER PRE-ASSEMBLY SURVEY DATA ANALYSIS CO-ORDINATE SYSTEM DEFINITION 11.
CLEX constraints between the 2 linacs CLIC meeting 18 March 2015 Vivien RUDE Contents : (Alignment in the CLEX) Lab constraints CLEX constraints.
ATF2: final doublet support Andrea JEREMIE B.Bolzon, N.Geffroy, G.Gaillard, J.P.Baud, F.Peltier With constant interaction with colleagues from KEK, SLAC.
H. MAINAUD DURAND on behalf of the CLIC active pre-alignement team QD0 and BDS pre-alignment.
Midterm Review 28-29/05/2015 Progress on wire-based accelerating structure alignment Natalia Galindo Munoz RF-structure development meeting 13/04/2016.
1 BROOKHAVEN SCIENCE ASSOCIATES 13th International Workshop on Accelerator Alignment October 13-17, 2014, IHEP, Beijing, China Smoothing Based on Best-fit.
BRAINSTORMING ON LASER BASED SOLUTIONS FOR CLIC PRE-ALIGNMENT INTRODUCTION Hélène MAINAUD DURAND, BE/ABP/SU, 09/02/2010 Status of the study CLIC pre-alignment.
H. MAINAUD DURAND on behalf of the CLIC active pre-alignment team Status on CLIC pre-alignment studies.
Two-beam module layout
on behalf of the CLIC active pre-alignment team
PACMAN impact on future module design
Examples of point groups and their characters – more details
TEST MODULE WG Cradles for CLIC module supporting system
Alignment methods developed for the validation of the thermal and mechanical behavior of the Two Beam Test Modules for the CLIC project Hélène MAINAUD.
Thermal-Structural Finite Element Analysis of CLIC module T0#2
Translation Rotation Scaling
List of changes and improvements for the next generation CLIC module
Status Brussels GANTRY
Installation plan for LAB modules
Towards a common mechanical interface
By Arsalan Jamialahmadi
Experimental program for module array
Three-Dimensional Graphics
Mechanical Engineering
The Storage Ring Control Network of NSLS-II
Chapter IV Spaces and Transforms
Plus Endcap Transfer Lines
WHY DOES THE IGS CARE ABOUT EOPs?
Three-Dimensional Graphics
Adjustment of the 3 reference tables at building 180 AT960 measurement
Translation in Homogeneous Coordinates
Presentation transcript:

Installation of the waveguides between MB T0#2 and DB T0#2 CLIC meeting 5.07.2017 Anna Zemanek

List of contents: 1. Impact of the installation of the waveguides 2 List of contents: 1. Impact of the installation of the waveguides 2. Impact of the installation of missing elements + impact of water 3. Impact of the vacuum (structures) CLIC meeting 5.07.2017 Anna Zemanek

1. Impact of the installation of the waveguides

1. Measurements before the installation of the waveguides 2 stations CMM data of the girders, PETS, DBQ, AS Temperature 20 °C ± 0.5°C Fiducials on the girder, PETS, DBQ, AS and network Coordinate frames of the girders: Primary axis – longitudinal – Y – between –IN and –OUT Secondary axis – vertical – Z – between –MIDDLE and –HIGH Origin –MIDDLE point - Using Least Square Method (LSM) 2 stations were calculated together with 4 DOF (3 translations, 1rotation Rz, Rx and Ry - fixed)

2. Measurements after the installation of the waveguides 3 stations CMM data of the girders, PETS, DBQ, AS Temperature 20 °C ± 0.5°C Fiducials on the girder, PETS, DBQ, AS and network Coordinate frames of the girders: Primary axis – longitudinal – Y – between –IN and –OUT Secondary axis – vertical – Z – between –MIDDLE and –HIGH Origin –MIDDLE point - Using Least Square Method (LSM) 3 stations were calculated together with 4 DOF (3 translations, 1rotation Rz, Rx and Ry - fixed)

Calculations of measurements 3. Best-fit: CMM data (girders) into LSM coordinates 4. Best fit: CMM data of AS, PETS, Quads into LSM X Z Y CMM LSM component

after installation of waveguides after installation of waveguides Results Comparison between measured points on the AS (using MB frame) AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 -IN -OUT -HIGH before waveguides after installation of waveguides difference Number X [mm] Y [mm] Z [mm] dX [mm] dY [mm] dZ [mm] 9AS1 0.770 -980.809 136.022   9AS2 1.134 -769.754 135.970 1.196 -769.753 135.964 0.061 0.001 -0.006 9AS3 2.289 -529.445 135.950 9AS4 33.543 -876.799 73.554 9AS5 33.314 -623.741 73.171 9AS6 72.171 -738.454 32.680 72.189 -738.462 32.658 0.018 -0.008 -0.022 9AS7 136.229 -875.262 1.736 136.221 -875.263 1.673 -0.007 -0.001 -0.063 9AS8 136.046 -627.859 1.523 136.081 -627.885 1.431 0.036 -0.026 -0.092 Y X Z Comparison between fitted points on the AS (using MB frame) before waveguides after installation of waveguides difference Number X [mm] Y [mm] Z [mm] dX [mm] dY [mm] dZ [mm] 9AS_high 0.840 -753.176 199.967 0.920 -753.184 199.965 0.081 -0.009 -0.002 9AS_in 0.284 -1001.181 -0.026 0.279 -1001.187 -0.031 -0.005 -0.006 9AS_middle 0.128 -753.181 -0.032 0.125 -753.187 -0.033 -0.003 -0.001 9AS_out -0.027 -505.181 -0.038 -0.028 -505.187 -0.036 0.000 0.002

after installation of waveguides after installation of waveguides Results Comparison between measured points on the AS (using MB frame) AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 -IN -OUT -HIGH before waveguides after installation of waveguides difference Number X [mm] Y [mm] Z [mm] dX [mm] dY [mm] dZ [mm] 10AS1 2.317 -460.277 135.891 1.632 -460.293 135.894 -0.685 -0.016 0.002 10AS2 2.786 -265.247 135.968 2.112 -265.258 135.954 -0.674 -0.011 -0.014   10AS3 0.197 -37.530 135.971 10AS4 33.636 -362.664 75.482 33.257 -362.671 75.653 -0.378 -0.007 0.171 10AS5 33.671 -141.074 75.710 33.296 -141.079 75.879 -0.376 -0.005 0.169 10AS7 135.989 -387.220 -5.404 135.998 -387.235 -4.731 0.008 -0.015 0.673 10AS8 136.051 -141.899 -3.544 136.067 -141.911 -2.874 0.016 -0.012 0.670 Y X Z Comparison between fitted points on the AS (using MB frame) before waveguides after installation of waveguides difference Number X [mm] Y [mm] Z [mm] dX [mm] dY [mm] dZ [mm] 10AS_high 1.783 -249.101 199.964 0.784 -249.109 199.961 -0.999 -0.008 -0.003 10AS_in -0.006 -493.103 -0.026 -0.015 -493.115 -0.031 -0.009 -0.012 -0.005 10AS_middle 0.012 -249.103 -0.029 0.010 -249.115 -0.038 -0.002 10AS_out 0.030 -5.103 0.035 -5.115 -0.045 0.005 -0.014

after installation of waveguides after installation of waveguides Results Comparison between measured points on the AS (using MB frame) AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 -IN -OUT -HIGH before waveguides after installation of waveguides difference Number X [mm] Y [mm] Z [mm] dX [mm] dY [mm] dZ [mm] 11AS1 0.926 27.215 136.134   11AS2 0.052 240.414 136.074 0.186 240.412 136.081 0.134 -0.002 0.007 11AS3 -0.616 482.696 136.025 -0.501 136.028 0.116 0.000 0.004 11AS4 33.604 132.328 81.894 33.688 132.318 81.862 0.084 -0.010 -0.032 11AS5 33.717 394.784 80.852 33.807 394.788 80.817 0.090 0.003 -0.035 11AS6 70.014 253.605 32.375 11AS7 136.059 140.434 2.887 136.069 140.419 2.760 0.010 -0.015 -0.127 11AS8 136.064 382.753 3.755 382.751 3.625 0.017 -0.130 Y X Z Comparison between fitted points on the AS (using MB frame) before waveguides after installation of waveguides difference Number X [mm] Y [mm] Z [mm] dX [mm] dY [mm] dZ [mm] 11AS_high 1.016 255.113 199.965 1.212 255.110 199.963 0.196 -0.004 -0.002 11AS_in 11.115 -0.035 0.000 11.110 -0.033 0.004 -0.005 0.002 11AS_middle -0.007 255.115 -0.032 0.003 0.010 -0.006 -0.001 11AS_out -0.010 499.115 -0.030 0.005 499.110 0.015 -0.003

after installation of waveguides after installation of waveguides Results Comparison between measured points on the AS (using MB frame) AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 -IN -OUT -HIGH before waveguides after installation of waveguides difference Number X [mm] Y [mm] Z [mm] dX [mm] dY [mm] dZ [mm] 12AS1 -1.456 539.015 135.913   12AS2 -1.063 741.886 135.990 -1.204 741.876 135.997 -0.141 -0.010 0.007 12AS3 1.583 984.516 136.238 1.445 984.497 136.243 -0.138 -0.020 0.005 12AS4 34.047 631.455 68.484 12AS6 71.400 768.581 32.291 71.389 768.568 32.307 -0.012 -0.014 0.015 12AS7 136.241 635.209 0.211 136.244 635.193 0.355 0.003 -0.017 0.144 12AS8 137.240 891.773 0.087 137.250 891.762 0.237 0.009 -0.011 0.150 Y X Z Comparison between fitted points on the AS (using MB frame) before waveguides after installation of waveguides difference Number X [mm] Y [mm] Z [mm] dX [mm] dY [mm] dZ [mm] 12AS_high 3.238 758.697 199.997 3.029 758.683 200.003 -0.209 -0.015 0.005 12AS_in -0.236 514.756 -0.045 -0.238 514.745 -0.047 -0.001 -0.011 -0.002 12AS_middle 0.661 758.755 0.014 0.665 758.743 0.016 0.004 -0.012 0.003 12AS_out 1.559 1002.753 0.072 1.568 1002.741 0.080 0.009 0.008

after installation of waveguides after installation of waveguides Results Comparison between measured points on the PETS (using DB frame) -HIGH PETS1 PETS2 PETS3 PETS6 PETS4 PETS5 -IN -OUT before waveguides after installation of waveguides difference Number X [mm] Y [mm] Z [mm] dX [mm] dY [mm] dZ [mm] 3PETS1 -30.340 -746.826 172.152 -30.311 -746.818 172.150 0.029 0.008 -0.002 3PETS2 -79.173 -746.464 122.051 -79.159 -746.455 122.054 0.014 0.003 3PETS3 -107.491 -745.512 20.618 -107.465 -745.529 20.631 0.026 -0.017 0.013 3PETS4 -32.323 -460.415 169.084 -32.300 -460.406 169.085 0.022 0.009 0.001 3PETS5 -80.512 -459.194 121.827 -80.500 -459.190 121.826 0.012 0.004 -0.001 3PETS6 -107.767 -460.331 14.866 -107.763 -460.324 14.868 0.002 Y X Z Comparison between fitted points on the PETS (using DB frame) before waveguides after installation of waveguides difference Number X [mm] Y [mm] Z [mm] dX [mm] dY [mm] dZ [mm] 3PETS-high 0.425 -728.687 199.990 0.451 -728.678 199.982 0.026 0.009 -0.007 3PETS-in -0.032 -1028.680 -0.020 -0.033 -1028.672 -0.026 0.000 0.008 -0.006 3PETS-middle -0.012 -728.680 -0.010 -728.672 -0.017 3PETS-out -423.680 -423.672 -0.009

after installation of waveguides after installation of waveguides Results Comparison between measured points on the PETS (using DB frame) -HIGH PETS4 PETS5 PETS6 PETS3 PETS1 PETS2 -IN -OUT before waveguides after installation of waveguides difference Number X [mm] Y [mm] Z [mm] dX [mm] dY [mm] dZ [mm] 4PETS1 -27.736 542.549 170.323 -27.726 542.550 170.332 0.010 0.001 0.008 4PETS2 -77.327 540.261 121.464 -77.321 540.267 121.467 0.006 0.005 0.002 4PETS3 -107.014 542.059 22.311 -107.010 542.063 22.321 0.004 4PETS4 -26.376 254.035 171.874 -26.367 254.034 171.869 -0.002 -0.005 4PETS5 -76.234 254.848 122.850 -76.219 254.845 122.852 0.015 -0.003 4PETS6 -106.325 254.158 25.896 -106.321 254.156 25.909 0.013 Y X Z Comparison between fitted points on the PETS (using DB frame) before waveguides after installation of waveguides difference Number X [mm] Y [mm] Z [mm] dX [mm] dY [mm] dZ [mm] 4PETS-high 6.620 270.743 199.924 6.635 0.015 0.000 -0.001 4PETS-in 0.079 -29.248 0.017 0.085 -29.245 0.013 0.006 0.003 -0.004 4PETS-middle 0.081 270.752 0.031 270.755 4PETS-out 0.084 575.752 0.046 575.755 0.049

after installation of waveguides after installation of waveguides Results Comparison between measured points on the DBQ (using DB frame) -HIGH DBQ1 -OUT DBQ2 DBQ3 DBQ5 DBQ6 DBQ8 -IN before waveguides after installation of waveguides difference Number X [mm] Y [mm] Z [mm] dX [mm] dY [mm] dZ [mm] 3DBQ1 49.799 -147.005 219.977 49.809 -147.012 0.010 -0.007 0.000 3DBQ2 -50.315 -277.397 219.327 -50.306 -277.402 219.319 0.009 -0.004 -0.008 3DBQ3 -156.103 -147.739 155.719 -156.092 -147.749 155.718 -0.010 -0.001 3DBQ5 -219.674 -277.490 50.264 -219.669 -277.498 50.265 0.005 0.001 3DBQ6 -219.318 -147.098 -50.346 -219.314 -147.109 -50.347 0.004 3DBQ8 -154.979 -277.337 -156.411 -154.974 -277.344 -156.412 Y X Z Comparison between fitted points on the DBQ (using DB frame) before waveguides after installation of waveguides difference Number X [mm] Y [mm] Z [mm] dX [mm] dY [mm] dZ [mm] 3DBPM-in 0.036 -392.961 0.005 0.043 -392.968 0.002 0.008 -0.007 -0.004 3DBPM-out 0.024 -82.961 0.029 -82.968 -0.001 -0.003 3DBQ-high -0.062 -222.959 200.004 -0.053 -222.966 200.000 0.009 3DBQ-middle -222.961 0.004 0.035 -222.968 0.000 0.006

after installation of waveguides after installation of waveguides Results Comparison between measured points on the DBQ (using DB frame) -HIGH DBQ1 -OUT DBQ2 DBQ3 DBQ5 DBQ6 DBQ8 -IN before waveguides after installation of waveguides difference Number X [mm] Y [mm] Z [mm] dX [mm] dY [mm] dZ [mm] 4DBQ1 50.102 856.333 219.785 50.105 856.327 219.783 0.003 -0.006 -0.002 4DBQ2 -49.752 725.684 219.387 725.681 219.391 0.000 -0.003 0.004 4DBQ3 -156.594 856.822 155.006 -156.595 856.824 155.008 -0.001 0.002 4DBQ5 -219.672 725.953 49.049 725.952 49.045 -0.004 4DBQ6 -219.496 854.848 -50.674 -219.498 854.851 4DBQ8 -155.798 726.495 -155.716 -155.796 726.488 -155.720 -0.007 Y X Z Comparison between fitted points on the DBQ (using DB frame) before waveguides after installation of waveguides difference Number X [mm] Y [mm] Z [mm] dX [mm] dY [mm] dZ [mm] 4DBPM-in 0.032 609.911 -0.022 0.028 609.906 -0.021 -0.003 -0.005 0.001 4DBPM-out 0.040 919.911 0.022 0.043 919.906 0.021 0.003 -0.001 4DBQ-high 0.148 779.883 200.003 779.879 200.002 0.000 -0.004 4DBQ-middle 0.036 779.911 0.037 779.906 0.002

Comparison between ‘before’ and ‘after’ installation of the waveguides Results Comparison between ‘before’ and ‘after’ installation of the waveguides Y X Z 9AS 10AS 11AS 12AS value Tx -0.003 mm Ty -0.006 Tz -0.001 Rx 16 µrad Ry 417 Rz -11 value Tx -0.002 mm Ty -0.012 Tz -0.009 Rx -17 µrad Ry -4985 Rz -29 value Tx 0.008 mm Ty -0.006 Tz -0.001 Rx -4 µrad Ry 907 Rz 9 value Tx 0.004 mm Ty -0.012 Tz 0.003 Rx 20 µrad Ry -1066 Rz -21 Y X Z Y X Z 3PETS 4PETS 3DBQ 4DBQ value   Tx -0.016 mm Ty -0.004 Tz -0.001 Rx 23 µrad Ry -63 Rz -38 value   Tx -0.003 mm Ty Tz 0.001 Rx -12 µrad Ry -59 Rz -11 value   Tx -0.006 mm Ty 0.007 Tz 0.004 Rx -3 µrad Ry -16 Rz -8 value   Tx 0.000 mm Ty 0.005 Tz Rx 7 µrad Ry 3 Rz 22

Results Comparison between ‘before’ and ‘after’ installation of the waveguides Y X Z 9AS 10AS 11AS 12AS value Tx -0.003 mm Ty -0.006 Tz -0.001 Rx 16 µrad Ry 417 Rz -11 value Tx -0.002 mm Ty -0.012 Tz -0.009 Rx -17 µrad Ry -4985 Rz -29 value Tx 0.008 mm Ty -0.006 Tz -0.001 Rx -4 µrad Ry 907 Rz 9 value Tx 0.004 mm Ty -0.012 Tz 0.003 Rx 20 µrad Ry -1066 Rz -21 Precision for translation ̴± 10 µm, for roll ̴± 60 µrad Y X Z Y X Z 3PETS 4PETS 3DBQ 4DBQ value   Tx -0.016 mm Ty -0.004 Tz -0.001 Rx 23 µrad Ry -63 Rz -38 value   Tx -0.003 mm Ty Tz 0.001 Rx -12 µrad Ry -59 Rz -11 value   Tx -0.006 mm Ty 0.007 Tz 0.004 Rx -3 µrad Ry -16 Rz -8 value   Tx 0.000 mm Ty 0.005 Tz Rx 7 µrad Ry 3 Rz 22

2. Impact of the installation of missing elements + impact of water

Measurements after installation of the missing elements 2 stations CMM data of the girders, PETS, DBQ, AS Temperature 20 °C ± 0.5°C Fiducials on the girder, PETS, DBQ, AS and network Coordinate frames of the girders: Primary axis – longitudinal – Y – between –IN and –OUT Secondary axis – vertical – Z – between –MIDDLE and –HIGH Origin –MIDDLE point - Using Least Square Method (LSM) 2 stations were calculated together with 4 DOF (3 translations, 1rotation Rz, Rx and Ry - fixed)

Results Impact of the missing elements (and water) on the alignment of the components Y X Z 9AS 10AS 11AS 12AS value Tx -0.008 mm Ty -0.014 Tz 0.006 Rx -31 µrad Ry -43 Rz 41 value Tx -0.005 mm Ty -0.025 Tz 0.000 Rx 11 µrad Ry -2259 Rz 21 value Tx -0.012 mm Ty -0.013 Tz -0.008 Rx 23 µrad Ry 185 Rz -22 value Tx -0.057 mm Ty 0.265 Tz 0.126 Rx -1649 µrad Ry -1944 Rz -256 Y X Z Y X Z 3PETS 4PETS 3DBQ 4DBQ value Tx 0.025 mm Ty 0.008 Tz -0.005 Rx -31 µrad Ry 31 Rz 39 value Tx 0.006 mm Ty 0.012 Tz -0.017 Rx -6 µrad Ry 104 Rz -8 value Tx 0.002 mm Ty 0.000 Tz -0.002 Rx -9 µrad Ry 23 Rz -13 value Tx -0.004 mm Ty -0.009 Tz -0.005 Rx 5 µrad Ry 7 Rz -27

Precision for translation ̴± 10 µm, for roll ̴± 60 µrad Results Impact of the missing elements (and water) on the alignment of the components Y X Z 9AS 10AS 11AS 12AS value Tx -0.008 mm Ty -0.014 Tz 0.006 Rx -31 µrad Ry -43 Rz 41 value Tx -0.005 mm Ty -0.025 Tz 0.000 Rx 11 µrad Ry -2259 Rz 21 value Tx -0.012 mm Ty -0.013 Tz -0.008 Rx 23 µrad Ry 185 Rz -22 value Tx -0.057 mm Ty 0.265 Tz 0.126 Rx -1649 µrad Ry -1944 Rz -256 Precision for translation ̴± 10 µm, for roll ̴± 60 µrad Y X Z Y X Z 4PETS 3DBQ 3PETS 4DBQ value Tx 0.025 mm Ty 0.008 Tz -0.005 Rx -31 µrad Ry 31 Rz 39 value Tx 0.006 mm Ty 0.012 Tz -0.017 Rx -6 µrad Ry 104 Rz -8 value Tx 0.002 mm Ty 0.000 Tz -0.002 Rx -9 µrad Ry 23 Rz -13 value Tx -0.004 mm Ty -0.009 Tz -0.005 Rx 5 µrad Ry 7 Rz -27

3. Impact of the vacuum (structures)

Measurements structures under the vacuum 1 station CMM data of the girder, AS Temperature 20 °C ± 0.5°C Fiducials on the girder, AS Coordinate frames of the girders: Primary axis – longitudinal – Y – between –IN and –OUT Secondary axis – vertical – Z – between –MIDDLE and –HIGH Origin –MIDDLE point

Results Impact of the vacuum on the structures 10AS 9AS Y X Z 10AS 9AS value Tx 0.000 mm Ty 0.019 Tz -0.002 Rx µrad Ry -118 Rz -42 value Tx -0.003 mm Ty 0.003 Tz 0.005 Rx 9 µrad Ry 71 Rz 12 Why on this structure so big differences? 11AS 12AS value Tx 0.006 mm Ty 0.001 Tz 0.003 Rx 32 µrad Ry 68 Rz -7 value Tx -0.023 mm Ty -0.120 Tz -0.080 Rx 812 µrad Ry 587 Rz -205

Thank you for attention Conclusion Installation of the waveguides: big impact in roll of the AS structures PETS and DBQ - OK 2. Installation of the missing elements (and water): impact on 3 AS structures and 2 PETS 3. Impact of the vacuum: in the structure 9AS a small impact In the structure 12AS a huge impact caused by … ? In two others 10AS and 11AS – no impact Thank you for attention