FPGA Helix Tracking Algorithm with STT

Slides:



Advertisements
Similar presentations
News on PXD Readout Issues Sören Lange, Universität Gießen, Belle II DAQ/TRG, KEK, 七夕, 平成 21.
Advertisements

Computing EVO meeting, January 15 th 2013 Status of the Tracking Code Gianluigi Boca, Pavia University.
An ATCA and FPGA-Based Data Processing Unit for PANDA Experiment H.XU, Z.-A. LIU,Q.WANG, D.JIN, Inst. High Energy Physics, Beijing, W. Kühn, J. Lang, S.
A data-driven performance evaluation method for CMS RPC trigger system & Study of Muon trigger efficiencies with official Tag & Probe package for ICHEP.
The LiC Detector Toy M. Valentan, M. Regler, R. Frühwirth Austrian Academy of Sciences Institute of High Energy Physics, Vienna InputSimulation ReconstructionOutput.
L3 Muon Trigger at D0 Status Report Thomas Hebbeker for Martin Wegner, RWTH Aachen, April 2002 The D0 muon system Functionality of the L3 muon trigger.
Modeling of the architectural studies for the PANDA DAT system K. Korcyl 1,2 W. Kuehn 3, J. Otwinowski 1, P. Salabura 1, L. Schmitt 4 1 Jagiellonian University,Krakow,
The High-Level Trigger of the ALICE Experiment Heinz Tilsner Kirchhoff-Institut für Physik Universität Heidelberg International Europhysics Conference.
1 Tracking Reconstruction Norman A. Graf SLAC July 19, 2006.
MdcPatRec Tracking Status Zhang Yao, Zhang Xueyao Shandong University.
Standalone FLES Package for Event Reconstruction and Selection in CBM DPG Mainz, 21 March 2012 I. Kisel 1,2, I. Kulakov 1, M. Zyzak 1 (for the CBM.
Tracking, PID and primary vertex reconstruction in the ITS Elisabetta Crescio-INFN Torino.
W-DHCAL Analysis Overview José Repond Argonne National Laboratory.
First Results from the NA62 Straw Spectrometer E uropean P hysical S ociety 2015, Wien Vito Palladino - CERN On Behalf of NA62 Collaboration.
Modeling PANDA TDAQ system Jacek Otwinowski Krzysztof Korcyl Radoslaw Trebacz Jagiellonian University - Krakow.
Fast Tracking of Strip and MAPS Detectors Joachim Gläß Computer Engineering, University of Mannheim Target application is trigger  1. do it fast  2.
Global Tracking for CBM Andrey Lebedev 1,2 Ivan Kisel 1 Gennady Ososkov 2 1 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany 2 Laboratory.
Preliminary results on DT T0s in beam collisions J. Santaolalla, J. Alcaraz (+ help/suggestions from C. Battilana, C. Fouz)
Current Status of MDC Track Reconstruction MdcPatRec Zhang Yao, Zhang Xueyao
Giuseppe Ruggiero CERN Straw Chamber WG meeting 07/02/2011 Spectrometer Reconstruction: Pattern recognition and Efficiency 07/02/ G.Ruggiero - Spectrometer.
1 MDC Track Finding at BESIII Zang Shilei BES Annual Meeting (Jun 1, 2005) ______________________________________ -Outline- 
SiD Tracking in the LOI and Future Plans Richard Partridge SLAC ALCPG 2009.
Siena, May A.Tonazzo –Performance of ATLAS MDT chambers /1 Performance of BIL tracking chambers for the ATLAS muon spectrometer A.Baroncelli,
Preliminary Design of Trigger System for BES III Zhen’an LIU Inst of High Energy Physics,Beijing Oct
BESIII offline software group Status of BESIII Event Reconstruction System.
Outline Description of the experimental setup Aim of this work TDC spectra analysis Tracking method steps Autocalibration Single tube resolution Summary.
Tracking software of the BESIII drift chamber Linghui WU For the BESIII MDC software group.
FPGA Helix Tracking Algorithm for PANDA Yutie Liang, Martin Galuska, Thomas Geßler, Wolfgang Kühn, Jens Sören Lange, David Münchow, Björn Spruck, Milan.
Nikhef Scientific Meeting 2000Onne Peters D0 Muon Spectrometer December 14-15, Amsterdam Onne Peters Nikhef Jamboree 2000.
FPGA Helix Tracking Algorithm for PANDA Yutie Liang, Martin Galuska, Thomas Geßler, Jifeng Hu, Wolfgang Kühn, Jens Sören Lange, David Münchow, Björn Spruck,
FPGA Helix Tracking Algorithm with STT Yutie Liang, Martin Galuska, Thomas Geßler, Wolfgang Kühn, Jens Sören Lange, David Münchow, Milan Wagner II. Physikalisches.
GSI, December 7 th, 2009 Status of the Pattern Recognition with the STT system alone. Gianluigi Boca 1.
FPGA Helix Tracking Algorithm -- VHDL implementation Yutie Liang, Martin Galuska, Thomas Geßler, Wolfgang Kühn, Jens Sören Lange, David Münchow, Björn.
14/06/2010 Stefano Spataro Status of LHE Tracking and Particle Identification Status of LHE Tracking and Particle Identification Stefano Spataro III Panda.
Review and Perspective of Muon Studies Marco Destefanis Università degli Studi di Torino PANDA Collaboration Meeting GSI (Germany) September 5-9, 2011.
Off-Detector Processing for Phase II Track Trigger Ulrich Heintz (Brown University) for U.H., M. Narain (Brown U) M. Johnson, R. Lipton (Fermilab) E. Hazen,
Torino, June 15 th, 2009 Status of the Pattern Recognition with the Hough transform and the STT system alone. Gianluigi Boca 1.
Susanna Costanza - Pavia Group PANDA C.M., Stockholm – June 14, 2010
Work on Muon System TDR - in progress Word -> Latex ?
High Energy Physics experiments.
Status of the Pattern Recognition with
STT Detector risk’s assessment
M. Kuhn, P. Hopchev, M. Ferro-Luzzi
First results from prototype measurements
2018/6/15 The Fast Tracker Real Time Processor and Its Impact on the Muon Isolation, Tau & b-Jet Online Selections at ATLAS Francesco Crescioli1 1University.
STT pattern recognition improvements since last December meeting and
Status of the Pattern Recognition with the Hough
Progress on the online tracking algorithm
Hit Triplet Finding in the PANDA-STT
the Pattern Recognition Workshop
Resolutions in the central tracker without the Mvd system
Status of the Offline Pattern Recognition Code GSI, December 10th 2012
Update on the FPGA Online Tracking Algorithm
Study of T0 Extraction in the Online Tracking Algorithm
Integration and alignment of ATLAS SCT
Vertex and Kinematic fitting with Pandaroot
Tracking Pattern Recognition
DT Local Reconstruction on CRAFT data
Status of the Offline Pattern Recognition Code Goa, March 12th 2013
The LHC collider in Geneva
Quarkonium production in ALICE
Alignment of the PHENIX Silicon Vertex Tracker (VTX) in 2014
Reddy Pratap Gandrajula (University of Iowa) on behalf of CMS
Commissioning of the ALICE-PHOS trigger
Bringing the ATLAS Muon Spectrometer to Life with Cosmic Rays
The LHCb Level 1 trigger LHC Symposium, October 27, 2001
MUC simulation and reconstruction
Contents First section: pion and proton misidentification probabilities as Loose or Tight Muons. Measurements using Jet-triggered data (from run).
road – Hough transform- c2
Understanding of the E391a Detector using KL decay
Presentation transcript:

FPGA Helix Tracking Algorithm with STT Yutie Liang, Martin Galuska, Thomas Geßler, Wolfgang Kühn, Jens Sören Lange, David Münchow, Milan Wagner II. Physikalisches Institut, JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN 11.04.2017

Outline 1. Introduction 2. Tracking Algorithm T0 extraction from tracking Tracking at FPGA 5. Summary and Outlook

Introduction to the PANDA STT 4636 Straw tubes 23-27 planar layers 15-19 axial layers (green) in beam direction 4 stereo double-layers for 3D reconstruction, with ±2.89 skew angle (blue/red) From STT : Wire position + drift time

Tracking Algorithm -- Road Finding Layer_ID Hit Tube_ID Hit: Seg_ID (3 bits) + LayerID (5 bits) + Tube_ID (6 bits) + Arrival time 1: Start from inner layer 2: Attach neighbour hit to tracklet layer by layer Boundary between two segments. Number of neighbor: 4 in axial layer; 6 in stereo layer

Tracking Algorithm -- helix parameters calculation Known : xi , yi , di Question: To determine a circle, x2 + y2 + ax + by + c = 0 Method: Minimize the equation E2 = ∑(xi2 + yi2 + a xi+ b yi + c)2 (1/di)2 x y xc, yc, R Sx = ∑xi … Sxx = ∑xixi … Sxxx = ∑xixixi … 1) Circle para. 2) Track quality.

Pz reconstruction 1: The radius, the position of the helix center in the XY plane are determined. 2: Φ = kZ + Φ0 One cylinder the helix lies in. Based on Pt determined before y Crossing points (ellipse) One straw tube x z Track need to be tangent to the crossing ellipse. Gianluigi Boca and Panda Collaboration, Panda STT TDR, 2012

Pz reconstruction Method: Minimize E2 = ∑(Φi + kzi + Φ0)2 (1/di)2 Known : zi , Φ i , di Question: To determine a line, Φ + kz + Φ0= 0

Extract T0 from Tracking T0 shift = Ʃdi /N / const (N: number of hits di: signed distance of circle to track) T0 shifted by: -50 ns: -20 ns: 10 ns: 20 ns: Extracted T0: -47.0±4.0 ns -19.8±2.1 ns 9.4±2.5 ns 19.0±2.3 ns

Event Structure -- pile-up 20 MHz 1600 ns revolution time 400 ns gap TMean between 2 events: 50 ns Drift time: ~200 ns Event pile-up

Tracking Strategy with experimental data -- 20 MHz Hits are sorted according to their arrival time. In case of T0 provided: Start from T0  Collect hits in 220 ns window  Run tracking algorithm  Assign track to right event In case of T0 not provided: Do tracking and T0 extraction at the same time

Tracking Strategy with experimental data -- Phase I Hits are sorted according to their arrival time. In case of T0 provided: Start from T0  Collect hits in 220 ns window  Run tracking algorithm  Assign track to right event In case of T0 not provided: Take the earliest time of a segment of hit as T0 .  do one more iteration to optimize.

8.4 35.9 114.1 8.4 35.9 114.1 128.2 139.0 148.3 T0 (ns) : MC Input Iter_2 0.0 37.2 115.3 9.0 9.4 38.2 114.5 140.9 141.1 150.9 8.4 35.9 114.1 128.2 139.0 148.3 T0 (ns) : MC Input Iter_2 0.0 37.2 114.5 140.9 116.6 9.0 9.4 38.2 #1 T0 = 116.8 ns #1 T0 = 116.6 ns #1 T0 = 119.0 ns #1 T0 = 140.9 ns 8.4 35.9 114.1 128.2 139.0 148.3 T0 (ns) : MC Input Iter_2 9.0 0.0 #0 T0 = 9.0 ns #1 T0 = 35.7 ns #1 T0 = 95.3 ns 8.4 35.9 114.1 128.2 139.0 148.3 T0 (ns) : MC Input Iter_2 9.0 0.0 37.2 9.4 #0 T0 = 37.2 ns #1 T0 = 9.4 ns #1 T0 = 98.3 ns 8.4 35.9 114.1 128.2 139.0 148.3 T0 (ns) : MC Input Iter_2 9.0 0.0 37.2 114.5 9.4 38.2 #0 T0 = 38.2 ns #1 T0 = 114.5 ns #1 T0 = 115.3 ns #1 T0 = 128.0 ns 12

Setup and Test PC as data source and receiver. Ethernet. Optical link Ethernet via Optical Link FPGA FIFO Tracking algorithm FIFO

Block diagram of algorithm in VHDL

Performance at FPGA For one event with 100 hits (6 tracks): 7 μs Hit reading Road finder Pt extraction Pz extraction (100 cc) (50 cc X 6) (120 cc X 2 X 6) (60 cc X 2 X 6)

Tracking at FPGA Data flow: Hit information at PC  FPGA, extract helix para.  PC PC is used to draw hits and helix in the plot. The helix parameters come from FPGA.

Performance test

The Latency

Summary and Outlook σ_pt : ~ 3.2% σ_pz : ~ 4.2% . 7 μs/event (6 tracks) Tracking strategy in case of W/O T0. Sitcp: Ready

Thank you

Performance test N_gen: number of generated tracks with at least 3 hits in STT |P_rec - P_gen| < 6 sigma 21

Performance at different event rate Number of fake tracks per event increases at high event rate. 22

Square Root Operation 384 bins in the range of 1 ~ 4, error ~ 0.4% Linear extrapolation, precision improves C++ VHDL Xc: 0.7286 0.7278 Yc: 161.153 161.138 R: 161.155 161.167 (0.01%) Φ Zi: C++ VHDL 29.4 ±5.0 29.23 ±5.1 17.0 ±8.1 16.93 ±8.1 z(cm)

The Structure of PANDA TDAQ Time Distribution System – provide clock for hit timestamps Concentrators/Buffers – buffering and on the fly data flow manipulation L1 Compute Nodes – mark hits which might belong to the same event (time slice) L2 Feature Extraction Nodes – combine detector information to extract physical signatures (momentum, …) L3 Event Selection Nodes – event selection based on a complete reconstruction (PID, vertex, invariant mass, …) Prototype Trigger-less Data Acquisition by Milan Wagner

The Missing Event at Event-based simulation Tracks in this event are not well reconstructed. In this case, it is hard to extract a T0. 25

Tracking at FPGA -- 20 MHz Data flow: Hit information at PC  FPGA, extract helix para.  PC PC is used to draw hits and helix in the plot. The helix parameters come from FPGA.

HK 22.7 Tracking Strategy 1) Start from 0 2) hits in 220 ns window 8.4 35.9 114.1 1) Start from 0 2) hits in 220 ns window 3) run tracking algorithm 4) extract T0 of next event 5) go back to 2) Two time-based simulations: 1 GeV single muon DPM

HK 22.7 Performance at FPGA For one event with 100 hits (6 tracks): 7 μs Hit reading Road finder Pt extraction Pz extraction (100 cc) (50 cc X 6) (120 cc X 2 X 6) (60 cc X 2 X 6)

HK 22.7 #1 T0 = 128.1 ns #1 T0 = 147.4 ns #1 T0 = 167.0 ns #1 T0 = 139.2 ns #0 T0 = 97.0 ns #1 T0 = 117.1 ns 8.4 35.9 114.1 128.2 139.0 148.3 T0 (ns) : MC Input Iter_2 8.3 0.0 34.6 112.4 128.0 116.0 138.4 139.2 147.4 8.5 #1 T0 = 138.4 ns #0 T0 = 67.8 ns #1 T0 = 116.6 ns #1 T0 = 128.0 ns #1 T0 = 147.4 ns #1 T0 = 158.1 ns 8.4 35.9 114.1 128.2 139.0 148.3 T0 (ns) : MC Input Iter_2 8.3 0.0 34.6 112.4 128.0 116.0 138.4 8.5 #1 T0 = 128.0 ns #1 T0 = 137.2 ns #1 T0 = 146.1 ns #1 T0 = 127.2 ns #0 T0 = 65.7 ns #1 T0 = 116.0 ns 8.4 35.9 114.1 128.2 139.0 148.3 T0 (ns) : MC Input Iter_2 8.3 0.0 34.6 112.4 128.0 116.0 8.5 #0 T0 = 8.5 ns #2 T0 = 34.6 ns #1 T0 = 36.3 ns 8.4 35.9 114.1 128.2 139.0 148.3 T0 (ns) : MC Input Iter_2 8.3 0.0 34.6 8.5 #0 T0 = 9.7 ns #2 T0 = 35.9 ns #1 T0 = 112.4 ns 8.4 35.9 114.1 128.2 139.0 148.3 T0 (ns) : MC Input Iter_2 8.3 0.0 34.6 112.4 8.5 #0 T0 = 8.3 ns #2 T0 = 31.7 ns #1 T0 = 28.0 ns 8.4 35.9 114.1 128.2 139.0 148.3 T0 (ns) : MC Input Iter_2 8.3 0.0

To Improve the Momentum Resolution -- using a 2nd iteration x y xc, yc, R Pt(input) 1st iteration 2nd iteration 0.2GeV/c : 0.195 ±0.0068 0.195±0.0068 0.5GeV/c : 0.5 ±0.0212 0.5 ± 0.0164 1.0GeV/c : 0.99 ±0.0595 1.0 ± 0.0317 2.0GeV/c : 1.85 ±0.213 2.0 ± 0.073 1st iteration 2nd iteration Pt(GeV/c) Pt(GeV/c)

5 4 8 6 7 2 3 1 .. 9

PZ reconstruction

Pz reconstruction 1: The radius, the position of the helix center in the XY plane are determined. 2: Φ = kZ + Φ0 One cylinder the helix lies in. Based on Pt determined before y Crossing points (ellipse) One straw tube x z Track need to be tangent to the crossing ellipse. Gianluigi Boca and Panda Collaboration, Panda STT TDR, 2012

Pz reconstruction Method: Minimize E2 = ∑(Φi + kzi + Φ0)2 (1/di)2 Known : zi , Φ i , di Question: To determine a line, Φ + kz + Φ0= 0

Pz reconstruction Pt = 0.5 GeV/c Pz(input) 0.25 GeV/c : 3.7 %