Date of download: 9/26/2017 Copyright © ASME. All rights reserved.

Slides:



Advertisements
Similar presentations
Date of download: 5/28/2016 Copyright © ASME. All rights reserved. From: Analysis and Experimental Estimation of Nonlinear Dispersion in a Periodic String.
Advertisements

Date of download: 6/6/2016 Copyright © ASME. All rights reserved. From: The Use of the Adjoint Method for Solving Typical Optimization Problems in Multibody.
Date of download: 6/20/2016 Copyright © ASME. All rights reserved.
Date of download: 6/21/2016 Copyright © ASME. All rights reserved. From: A Physics-Based Friction Model and Integration to a Simple Dynamical System J.
Date of download: 7/3/2016 Copyright © ASME. All rights reserved. From: Optimal Inputs for Phase Models of Spiking Neurons J. Comput. Nonlinear Dynam.
Date of download: 7/6/2016 Copyright © ASME. All rights reserved. From: Reduction of Physical and Constraint Degrees-of-Freedom of Redundant Formulated.
Date of download: 7/6/2016 Copyright © ASME. All rights reserved. From: The Scattering of Acoustic Wave by a Chain of Elastic Spheres in Liquid J. Vib.
Date of download: 7/7/2016 Copyright © ASME. All rights reserved. Cost-Effective Reliability Analysis and Testing of Medical Devices 1 J. Med. Devices.
Date of download: 7/8/2016 Copyright © ASME. All rights reserved. From: An Approximate Formula to Calculate the Restoring and Damping Forces of an Air.
Date of download: 7/10/2016 Copyright © ASME. All rights reserved. From: Three-Dimensional Modeling of Supine Human and Transport System Under Whole-Body.
Date of download: 9/17/2016 Copyright © ASME. All rights reserved. From: Frequency Tuning of a Nonlinear Electromagnetic Energy Harvester J. Vib. Acoust.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Nonlinear Control of Aircraft Engines Using a Generalized Gronwall-Bellman Lemma.
Date of download: 9/19/2016 Copyright © ASME. All rights reserved. From: Comparative Analysis of Different Configuration Domestic Refrigerators: A Computational.
Date of download: 9/19/2016 Copyright © ASME. All rights reserved. From: Determining the Power Flow in a Rectangular Plate Using a Generalized Two-Step.
Date of download: 9/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/1/2017 Copyright © ASME. All rights reserved.
Date of download: 10/5/2017 Copyright © ASME. All rights reserved.
From: Time Delay Control for Two van der Pol Oscillators
From: Nonlinear Vibration of Gears With Tooth Surface Modifications
Date of download: 10/10/2017 Copyright © ASME. All rights reserved.
From: Nonlinear Dynamical Analysis of the “Power Ball”
From: Nonlinear Dynamical Analysis of the “Power Ball”
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/19/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
From: Gas-Filled Encapsulated Thermal-Acoustic Transducer
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/27/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
From: Subharmonic Resonance Cascades in a Class of Coupled Resonators
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
From: Flight Dynamics and Simulation of Laser Propelled Lightcraft
From: Hopf Instabilities in Free Piston Stirling Engines
Date of download: 11/4/2017 Copyright © ASME. All rights reserved.
Date of download: 11/4/2017 Copyright © ASME. All rights reserved.
From: Design for Control of Wheeled Inverted Pendulum Platforms
Date of download: 11/9/2017 Copyright © ASME. All rights reserved.
Date of download: 11/9/2017 Copyright © ASME. All rights reserved.
Date of download: 11/10/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/15/2017 Copyright © ASME. All rights reserved.
Date of download: 12/16/2017 Copyright © ASME. All rights reserved.
Date of download: 12/18/2017 Copyright © ASME. All rights reserved.
Date of download: 12/23/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
Date of download: 12/29/2017 Copyright © ASME. All rights reserved.
Date of download: 12/29/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
From: The Multimodal Dynamics of a Walnut Tree: Experiments and Models
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/3/2018 Copyright © ASME. All rights reserved.
Date of download: 1/22/2018 Copyright © ASME. All rights reserved.
Design of a Wireless Biological Signal Conditioning System1
Presentation transcript:

Date of download: 9/26/2017 Copyright © ASME. All rights reserved. From: Nonlinear Transient Dynamics of Pendulum Torsional Vibration Absorbers—Part I: Theory J. Vib. Acoust. 2013;135(1):011017-011017-10. doi:10.1115/1.4007561 Figure Legend: Depiction of the CPVA system model showing three possible paths for the absorber COM. The outermost (circular) and innermost (cycloidal) paths bound the two-parameter family under consideration; the middle path corresponds to the tautochrone. The paths are shown enlarged, and not to scale relative to the rotor, to exaggerate the differences in the paths.

Date of download: 9/26/2017 Copyright © ASME. All rights reserved. From: Nonlinear Transient Dynamics of Pendulum Torsional Vibration Absorbers—Part I: Theory J. Vib. Acoust. 2013;135(1):011017-011017-10. doi:10.1115/1.4007561 Figure Legend: A damped zero initial condition transient trajectory, IC 1, obtained from simulations of the general path averaged equations, indicating the peak and steady-state amplitudes: (a) shown in the phase space, and (b) as the absorber response versus θ. System parameter values: Dc = 0.30 and χc = 0.10. Also shown in (a) is the trajectory from the unstable manifold of the saddle that tends toward the desired steady state.

Date of download: 9/26/2017 Copyright © ASME. All rights reserved. From: Nonlinear Transient Dynamics of Pendulum Torsional Vibration Absorbers—Part I: Theory J. Vib. Acoust. 2013;135(1):011017-011017-10. doi:10.1115/1.4007561 Figure Legend: Simulations of the full EOM (Eqs. (1) and (2)) for ε = 0.03 and n = 1.5, and three sets of system parameter values that yield χc = 0.112, with a predicted overshoot of 122%. (a) Γc = 1.171, n˜ = 1.52 (σc = -4.263), λ = 0 (ξc = -4.22), simulated percent overshoot = 119%; (b) Γc = 0.799, n˜ = 1.51 (σc = -3.253), λ = 0.1 (ξc = -4.03), simulated percent overshoot = 121%; and (c) Γc = 0.477, n˜ = 1.5 (σc = -2.25), λ = 0.2 (ξc = -3.732), simulated percent overshoot = 124%. Additional parameters used to simulate the full EOM include: Γ0 = Γ/2, α = 0, and β = 1.

Date of download: 9/26/2017 Copyright © ASME. All rights reserved. From: Nonlinear Transient Dynamics of Pendulum Torsional Vibration Absorbers—Part I: Theory J. Vib. Acoust. 2013;135(1):011017-011017-10. doi:10.1115/1.4007561 Figure Legend: The percent overshoot of an absorber system subject to zero initial conditions, computed using the pseudoenergy method for Di = 0, and using the averaged equations for Di≠0; for (a) general path and (b) near-tautochronic path absorbers

Date of download: 9/26/2017 Copyright © ASME. All rights reserved. From: Nonlinear Transient Dynamics of Pendulum Torsional Vibration Absorbers—Part I: Theory J. Vib. Acoust. 2013;135(1):011017-011017-10. doi:10.1115/1.4007561 Figure Legend: The rotor and absorber response to a step input of sinusoidal torque. (a) Rotor and (b) absorber response to input +Γsin(nθ), resulting in absorber overshoot of 118.56%; (c) rotor and (d) absorber response to input -Γsin(nθ), resulting in absorber overshoot of 118.30%. Simulation data: ε = 0.07, Γc = 0.71, n˜ = 1.51, λ = 0, ζ = 0.002, Γ0 = Γ/2, α = 0, and β = 1. For these parameters, χc = 0.161, Dc = 0.10, and the pseudoenergy theory predicts absorber overshoot of 117.30%.

Date of download: 9/26/2017 Copyright © ASME. All rights reserved. From: Nonlinear Transient Dynamics of Pendulum Torsional Vibration Absorbers—Part I: Theory J. Vib. Acoust. 2013;135(1):011017-011017-10. doi:10.1115/1.4007561 Figure Legend: Comparison of the general path pseudoenergy method with simulations of the full EOM for μ = 0, n = 1.5, ε = 0.03, Γ0 = Γ/2, α = 0, and β = 1. Solid line is the pseudoenergy prediction. Simulation data: sweep of χc by varying λ from 0.80 to 0 with εΓ = 0.005, and σc = -3.25 (n˜ = 1.51). Sweep of χc by varying εΓ from 0.001 to 0.006 with ξc = -4.09(λ = 0), and σc = -3.25 (n˜ = 1.51). Sweep of χc by varying n˜ from 1.58 to 1.501 with εΓ = 0.003 (note that in this case varying n˜ results in sweeping ξc from − 5 to −4 for a fixed λ = 0).

Date of download: 9/26/2017 Copyright © ASME. All rights reserved. From: Nonlinear Transient Dynamics of Pendulum Torsional Vibration Absorbers—Part I: Theory J. Vib. Acoust. 2013;135(1):011017-011017-10. doi:10.1115/1.4007561 Figure Legend: Comparison of the general path pseudoenergy method with simulations of the full EOM for μ = 0, n = 1.5, Γ0 = Γ/2, α = 0, and β = 1. Solid line is the pseudoenergy prediction. (a) ε = 0.07 with simulation data: sweep of χc by varying λ from 0.80 to 0 with εΓ = 0.012, and σc = -2.68 (n˜ = 1.51). Sweep of χc by varying εΓ from 0.003 to 0.013 with ξc = -4.09 (λ = 0), and σc = -2.68 (n˜ = 1.51). Sweep of χc by varying n˜ from 1.58 to 1.501 with εΓ = 0.01 (note that in this case varying n˜ results in varying ξc from −5 to −4 for a fixed λ = 0) (b) ε = 0.10 with simulation data: sweep of χc by varying λ from 0.80 to 0 with εΓ = 0.019, and σc = -2.55 (n˜ = 1.51). Sweep of χc by varying εΓ from 0.005 to 0.021 with ξc = -4.09 (λ = 0), and σc = -2.55 (n˜ = 1.51). Sweep of χc by varying n˜ from 1.58 to 1.501 with εΓ = 0.016 (note that in this case varying n˜ results in sweeping ξc from −5 to −4 for a fixed λ = 0).

Date of download: 9/26/2017 Copyright © ASME. All rights reserved. From: Nonlinear Transient Dynamics of Pendulum Torsional Vibration Absorbers—Part I: Theory J. Vib. Acoust. 2013;135(1):011017-011017-10. doi:10.1115/1.4007561 Figure Legend: Comparison of the general path pseudoenergy method with simulations of the full EOM for Dc = 0.05 (ζ = 0.001) and Dc = 0.10 (ζ = 0.002). Simulation data: sweep of χc by varying λ from 0 to 0.80 with εΓ = 0.013. Sweep of χc by varying εΓ from 0.003 to 0.013 with ξc = -4.09 (λ = 0). Other parameter values used in simulations are: n˜ = 1.51, n = 1.5, ε = 0.07, Γ0 = Γ/2, α = 0, and β = 1.

Date of download: 9/26/2017 Copyright © ASME. All rights reserved. From: Nonlinear Transient Dynamics of Pendulum Torsional Vibration Absorbers—Part I: Theory J. Vib. Acoust. 2013;135(1):011017-011017-10. doi:10.1115/1.4007561 Figure Legend: Comparison of the near-tautochronic path pseudoenergy method with simulations of the full EOM for λ = λe, μ = 0, n = 1.5, ε = 0.07, Γ0 = Γ/2, α = 0, and β = 1. (a) Simulation data: sweep of χt by varying εΓ from 0.009 to 0.033 and σt = -2.68 (n˜ = 1.51). (b) Simulation data: sweep of χt by varying n˜ from 1.67 to 1.50 with εΓ = 0.028.