(KEK Theory Center, IPNS / J-PARC branch)

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

Low-energy anti-kaon nucleon and nuclei interactions
Spectroscopy at the Particle Threshold H. Lenske 1.
Possible existence of neutral hyper-nucleus with strangeness -2 and its production SPN 2014, Changsha, Dec , 2014 Institute of High Energy Physics.
1.Introduction 2.Exotic properties of K nuclei 3.To go forward (Future plan) 4.Summary Dense K nuclei - To go forward - KEK Nuclear KEK, ’06.Aug.3.
EXOTIC ATOMS/NUCLEI T. Yamazaki, RIKEN Yukawa mesons (1935) Anderson PR51(1937), Nishina PR52(1937): muon Tomonaga-Araki, PR58(1940): mesonic atom formation.
K - 中間子原子核研究の現状 1.Introduction Expanding the nuclear world Exotic properties of kaonic nuclei with a phenomenological K bar N potential 2.Variational calculation.
Table of contents 1. Motivation 2. Formalism (3-body equation) 3. Results (KNN resonance state) 4. Summary Table of contents 1. Motivation 2. Formalism.
K - pp studied with Coupled-channel Complex Scaling method Workshop on “Hadron and Nuclear Physics (HNP09)” Arata hall, Osaka univ., Ibaraki,
The structure of neutron star by using the quark-meson coupling model Heavy Ion Meeting ( ) C. Y. Ryu Soongsil University, Korea.
“Super Strong Nuclear Force” caused by migrating K - mesons Toshimitsu Yamazaki and Yoshinori Akaishi RIKEN Chiral07 Nov , Osaka ATOMMOLECULE.
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
Toshitaka Uchino Tetsuo Hyodo, Makoto Oka Tokyo Institute of Technology 10 DEC 2010.
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
Y. Ikeda and T. Sato (Osaka Univ.) ストレンジ・ダイバリオンの 質量と崩壊幅の研究 KNN resonance (Recent theoretical progress) KNN resonance (Recent theoretical progress) Faddeev.
Yoichi Ikeda (Osaka Univ.) in collaboration with Hiroyuki Kamano (JLab) and Toru Sato (Osaka Univ.) Introduction Introduction Our model of KN interaction.
Atsushi Tokiyasu (for LEPS collaboration) Experimental Nuclear and Hadronic Physics Laboratry, Department of Physics, Kyoto University.
The search for deeply bound kaonic nuclear states at J-PARC Toshihiko Hiraiwa Kyoto University On behalf of the J-PARC E15 collaboration.
1 Formation spectra of  -mesic nuclei by (  +,p) reaction at J-PARC and chiral symmetry for baryons Hideko Nagahiro (RCNP) Collaborators : Daisuke Jido.
Application of coupled-channel Complex Scaling Method to the K bar N-πY system 1.Introduction 2.coupled-channel Complex Scaling Method For resonance states.
Light nuclear systems with an antikaon KEK Theory Center / IPNS KEK Theory Center / IPNS Akinobu Doté Part 1, “Dense kaonic nuclei” Revisit the study of.
Study of light kaonic nuclei with a Chiral SU(3)-based KN potential A. Dote (KEK) W. Weise (TU Munich)  Introduction  ppK - studied with a simple model.
K - d 原子の理論計算の現状と 今後の課題 Shota Ohnishi (Tokyo Inst. Tech. / RIKEN) in collaboration with Yoichi Ikeda (RIKEN) Tetsuo Hyodo (YITP, Kyoto Univ. ) Emiko Hiyama.
We construct a relativistic framework which takes into pionic correlations(2p-2h) account seriously from both interests: 1. The role of pions on nuclei.
Application of coupled-channel Complex Scaling Method to Λ(1405) 1.Introduction Recent status of theoretical study of K - pp 2.Application of ccCSM to.
Signature of strange dibaryon in kaon-induced reaction Shota Ohnishi A in collaboration with; Y. Ikeda B, H. Kamano C, T. Sato A A; Department of Physics,
Interplay of antikaons with hyperons in nuclei and in neutron stars Interplay of antikaons with hyperons in nuclei and in neutron stars 13th International.
1.Introduction 2.Exotic properties of K nuclei 3.Recent experimental results Strange tribaryons by KEK experiment ppK - by FINUDA ppnK - by FOPI 4.Future.
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
Strangeness Hadrons in Few-Body Nuclei Yoshinori AKAISHI, Akinobu DOTE and Toshimitsu YAMAZAKI Deeply bound kaonic states K-K- Atomic states Nuclear state.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Variational calculation of K - pp with Chiral SU(3)-based K bar N interaction The International Conference on Particles And Nuclei (PANIC08) ’
1  - mesic nuclei and baryon chiral symmetry in medium Hideko Nagahiro (Nara Women’s Univ.) collaborators: Daisuke Jido (Tech. Univ. Muenchen) Satoru.
Department of Physics, Sungkyunkwan University C. Y. Ryu, C. H. Hyun, and S. W. Hong Application of the Quark-meson coupling model to dense nuclear matter.
Few-body approach for structure of light kaonic nuclei Shota Ohnishi (Hokkaido Univ.) In collaboration with Tsubasa Hoshino (Hokkaido Univ.) Wataru Horiuchi.
DWIA calculation of 3 He (In-flight K -, n) reaction RIKEN, Advanced Meson Science Lab. Takahisa Koike KEK 研究会「現代の原子核物理-多様化し進化する原子核の描像」、 2006 年 8 月 3 日.
Search for the K  pp bound state via the in-flight 3 He(K ,n) reaction MESON2014 Yuta Sada for the E15 collaboration RCNP, Osaka Univ & RIKEN 1.
Current theoretical topics on K - pp quasi-bound state Sajjad MARRI and Toshimitsu YAMAZAKI  Theoretical interpretation of J-PARC E15 and E27 results.
Search for a nuclear kaon bound state K - pp at the J-PARC K1.8 beam line. Dep. of physics, Kyoto University / JAEA Y. Ichikawa for E27 Collaboration Korea-Japan.
多体共鳴状態の境界条件によって解析した3α共鳴状態の構造
Hadron excitations as resonant particles in hadron reactions
Experimental studies on the KbarN interaction
Kaon Absorption from Kaonic Atoms and
Tensor optimized shell model and role of pion in finite nuclei
KbarNN bound state search at J-PARC
η-mesic nucleus by d + d reaction ー how to deduce η-Nucleus int. ー
Photoproduction of K* for the study of the structure of L(1405)
E. Wang, J. J. Xie, E. Oset Zhengzhou University
T. Kishimoto RCNP and Physics Dept. Osaka University
Photoproduction of K* for the study of L(1405)
Structure of few-body light Λ hypernuclei
Role of Pions in Nuclei and Experimental Characteristics
Relativistic extended chiral mean field model for finite nuclei
平岩聡彦 京都大学 On behalf of the J-PARC E15 collaboration
Impurity effects in p-sd shell and neutron-rich L hypernuclei
Shota Ohnishi (Tokyo Inst. Tech. / RIKEN)
d*, a quark model perspective
Deeply Bound Mesonic States -Case of Kaon-
On a Search for -Mesic Nuclei at MAMI-C
Pions in nuclei and tensor force
Osaka Electro-Communication Univ.
少数体ケイオン核の課題 August 7, 2008 Y. Akaishi T. Yamazaki, M. Obu, M. Wada.
Bound kaon approach for the ppK- system in the Skyrme model
Signature of L(1405) in K-dpSn reaction
Comprehensive study of S = -1 hyperon resonances via the coupled-channels analysis of K- p and K- d reactions Hiroyuki Kamano (KEK) YITP Workshop on.
Few-body approach for structure of light kaonic nuclei
On the analytic structure of the KN - pS scattering amplitudes
AN EXPLANATION OF THE D5/2-(1930) AS A rD BOUND STATE
Theory on Hadrons in nuclear medium
Presentation transcript:

(KEK Theory Center, IPNS / J-PARC branch) The “K-pp” system investigated with a coupled-channel Complex Scaling Method Akinobu Doté (KEK Theory Center, IPNS / J-PARC branch) Introduction Current situation of theoretical studies of “K-pp” “K-pp” investigated with ccCSM+Feshbach method Outline of the methodology Result with SIDDHARTA constraint for K-p scattering length Double pole of “K-pp”? Fully coupled-channel CSM study (On-going) Summary, future plans and remarks Takashi Inoue (Nihon univ.) Takayuki Myo (Osaka Inst. Tech.) The 14th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU2016) 26. July, ’16 @ Kyoto University Clock Tower Centennial Hall, Kyoto, Japan

1. Introduction

Strongly attractive KbarN potential Proton KbarN two-body system Excited hyperon Λ(1405) = K- proton quasi-bound state Low energy scattering data, 1s level shift of kaonic hydrogen atom Hard to describe Λ(1405) with Quark Model as a 3-quark state Success of Chiral Unitary Model with a meson-baryon picture -->> Mr. Y. Kamiya’s talk Strongly attractive KbarN potential † A. D., H. Horiuchi, Y. Akaishi and T. Yamazaki, PRC70, 044313 (2004)

Strongly attractive KbarN potential Proton KbarN two-body system Excited hyperon Λ(1405) = K- proton quasi-bound state Low energy scattering data, 1s level shift of kaonic hydrogen atom Hard to describe Λ(1405) with Quark Model as a 3-quark state Success of Chiral Unitary Model with a meson-baryon picture -->> Mr. Y. Kamiya’s talk Strongly attractive KbarN potential Doorway to dense matter† → Chiral symmetry restoration in dense matter Interesting structure† Neutron star † A. D., H. Horiuchi, Y. Akaishi and T. Yamazaki, PRC70, 044313 (2004) 3HeK-, pppK-, 4HeK-, pppnK-, …, 8BeK-,… Kaonic nuclei

Prototype system = K- pp Proton KbarN two-body system = Λ(1405) P K- Prototype system = K- pp Kaonic nuclei = Nuclear many-body system with antikaons

Prototype system = K- pp Experiments of K-pp search Kaonic nuclei at J-PARC P K- Prototype system = K- pp FINUDA DISTO K- pp??? B. E.= 115 +6+3/-5-4 MeV Γ = 67 +14+2/-11-3 MeV PRL 94, 212303 (2005) K- pp??? B. E. = 103 ±3 ±5 MeV Γ = 118 ±8 ±10 MeV PRL104, 132502 (2010) J-PARC E15 J-PARC E27 SPring8/LEPS Attraction in K-pp subthreshold region PTEP 061D01 (2015) ΣN cusp, Y* shift PTEP 101D03 (2014) No evidence of K-pp bound state PLB 728, 616 (2014)

K-pp at J-PARC J-PARC E27 d(π+, K+) Pπ=1.7GeV/c 𝑀𝑎𝑠𝑠= 2275 −18−30 +17+21 MeV (BKpp ~ 95 MeV) 𝛤 = 162 −45−78 +87+66 MeV Y. Ichkawa et al. PTEP 2015, 021D01 -->> Dr. Y. Ichikawa’s talk on a different reaction J-PARC E15 (1st run) 3He(inflight K-, Λp)nmissing PK=1.0GeV/c 𝑀𝑎𝑠𝑠= 2355 −8 +6 ±12 MeV (BKpp ~ 15 MeV) 𝛤 = 110 −17 +19 ±27 MeV Y. Sada et al. PTEP 2016, 051D01 -->> Mr. T. Yamaga’s talk

2. Current situation of theoretical studies P K- “K-pp” = KbarNN – πΣN – πΛN (Jπ = 0-, T=1/2)

Theoretical studies of “K-pp” Variational / Faddeev-AGS approaches Chiral / Phenomenological potentials Dote-Hyodo-Weise Barnea-Gal-Liverts Akaishi-Yamazaki Ikeda-Kamano-Sato Shevchenko-Gal-Mares PRC79, 014003 (2009) PLB712, 132 (2012) PRC76, 045201 (2007) PTP124, 533 (2010) PRC76, 044004 (2007) B(K-pp) 20±3 16 47 9 ~ 16 50 ~ 70 Γ 40 ~ 70 41 61 34 ~ 46 90 ~ 110 Method Variational (Gauss) Variational (H. H.) Faddeev-AGS Potential Chiral (E-dep.) Pheno. * Latest progress Systematic study of kaonic clusters (A+1≦ 7) with Stochastic Variational Method -->> Dr. S. Ohnishi’s talk Study of kaonic clusters (A+1, A+2≦ 4) with Hyperspherical Harmonics approach in momentum-space (R. Y. Kezerashvili, et al., arXiv:1510.00478)

Theoretical studies of “K-pp” J-PARC E15 J-PARC E27 DISTO FINUDA Faddeev-AGS Pheno. pot. (E-indep.) Variational (Gauss) Chial. pot. (E-dep.) Chiral pot. (E-dep.)

Theoretical studies of “K-pp” J-PARC E15 J-PARC E27 DISTO FINUDA Faddeev-AGS Pheno. pot. (E-indep.) Variational (Gauss) Chial. pot. (E-dep.) Chiral pot. (E-dep.) B(K-pp) < 100 MeV K-pp should be a resonance between KbarNN and πΣN thresholds.

Theoretical studies of “K-pp” J-PARC E15 J-PARC E27 DISTO FINUDA Faddeev-AGS Pheno. pot. (E-indep.) Variational (Gauss) Chial. pot. (E-dep.) Chiral pot. (E-dep.) B(K-pp) < 100 MeV K-pp should be a resonance between KbarNN and πΣN thresholds. Chiral pot. (E-dep.) → Small B. E. … Λ(1405) ~ 1420 MeV (B. E. ~ 15 MeV) Pheno. pot. (E-indep.) → Large B. E. … Λ(1405) = 1405 MeV (B. E. = 30 MeV)

3. “K-pp” investigated with ccCSM+Feshbach method KbarNN – πΣN – πΛN (Jπ = 0-, T=1/2)

Coupled-channel system Λ(1405) = Resonant state & KbarN coupled with πΣ “K-pp” … Resonant state of KbarNN-πYN coupled-channel system Doté, Hyodo, Weise, PRC79, 014003(2009). Akaishi, Yamazaki, PRC76, 045201(2007) Ikeda, Sato, PRC76, 035203(2007). Shevchenko, Gal, Mares, PRC76, 044004(2007) Barnea, Gal, Liverts, PLB712, 132(2012) Resonant state Coupled-channel system ⇒ “coupled-channel Complex Scaling Method”

Complex Scaling Method S. Aoyama, T. Myo, K. Kato, K. Ikeda, PTP116, 1 (2006) T. Myo, Y. Kikuchi, H. Masui, K. Kato, PPNP79, 1 (2014) Complex Scaling Method … Powerful tool for resonance study of many-body system

Chiral SU(3) potential with a Gaussian form A. D., T. Inoue, T. Myo, Nucl. Phys. A 912, 66 (2013) Anti-kaon = Nambu-Goldstone boson ⇒ Chiral SU(3)-based KbarN potential Weinberg-Tomozawa term of effective chiral Lagrangian Gaussian form in r-space Semi-rela. / Non-rela. Based on Chiral SU(3) theory → Energy dependence Constrained by KbarN scattering length Old analysis by Martin aKN(I=0) = -1.70 + i0.67 fm, aKN(I=1) = 0.37 + i0.60 fm A. D. Martin, NPB179, 33(1979) Analysis of SIDDHARTA K-p data with a coupled-channel chiral dynamics aK-p = -0.65 + i0.81 fm, aK-n = 0.57 + i0.72 fm Y. Ikeda, T. Hyodo and W. Weise, NPA 881, 98 (2012)

Double-pole structure of Λ(1405) Λ(1405) on coupled-channel Complex Scaling Method KbarN potential: a chiral SU(3) potential (NRv2, fπ=110, Martin constraint) πΣ continuum KbarN continuum A. D., T. Inoue, T. Myo, Nucl. Phys. A 912, 66 (2013) θ=30° Λ* -Γ/2 [MeV] M [MeV] Higher pole Lower pole πΣ KbarN A. D., T. Myo, Nucl. Phys. A 930, 86 (2014) “Complex-range Gaussian basis” θ=40° Double-pole structure of Λ(1405) D. Jido, J.A. Oller, E. Oset, A. Ramos, U.-G. Meißner, Nucl. Phys. A 725 (2003) 181

Outline: ccCSM+Feshbach calc. of “K-pp” A. D., T. Inoue, T. Myo, PTEP 2015, 043D02 (2015) “K-pp” = KbarNN – πΣN – πΛN (Jπ = 0-, T=1/2)

Outline: ccCSM+Feshbach calc. of “K-pp” A. D., T. Inoue, T. Myo, PTEP 2015, 043D02 (2015) “K-pp” = KbarNN – πΣN – πΛN (Jπ = 0-, T=1/2) KbarNN single-channel three-body problem with an effective KbarN potential

Outline: ccCSM+Feshbach calc. of “K-pp” 2. Self-consistency for complex KbarN energy is taken into account. E(KN)In : assumed in the KbarN potential E(KN)Cal : calculated with the obtained K-pp E(KN)In= E(KN)Cal

“K-pp” with SIDDHARTA value NN pot. : Av18 (Central) KbarN pot. : NRv2a-IHW pot. (fπ=90 - 120MeV) aKN(I=0) = -1.97 + i1.05 fm aKN(I=1) = 0.57 + i0.73 fm Field picture and BGL ansatz (B, Γ/2) = (15~22, 10~18) 120 110 120 Particle picture (B, Γ/2) = (16~19, 14~25) fπ = 100 110 100 Barnea, Gal, Liverts, PLB 712, 132 (2012) Averaged KbarN energy in many-body system fπ = 90 E(KN) = -B(K) E(KN) = -B(K)/2 Field picture Particle picture E(KN) = -B(K)/2 - Δ

NN correlation density NN pot. : Av18 (Central) KbarN pot. : NRv2c potential fπ=110, Particle pict. Re ρNN Im ρNN NN repulsive core N Kbar NN distance = 2.1 - i 0.3 fm ~ Mean distance of 2N in nuclear matter at normal density!

3. “K-pp” investigated with ccCSM+Feshbach method Double pole of “K-pp”?

Indicator of self-consistency Δ=|E(KN)Cal – E(KN)In| Double pole of “K-pp”? Chiral pot. (fπ=110 MeV, Martin) Particle picture ? Indicator of self-consistency Δ=|E(KN)Cal – E(KN)In| Δ=10 at E(KN)=(58, 64) Nearly self-consistent solution: B(KNN) = 79 Γ/2 = 98 MeV Im E(KN)In ★ Δ=0 at E(KN)=(29, 14) Self-consistent solution: B(KNN) = 27.3 Γ/2 = 18.9 MeV Lower pole?? “Candidate” of self-consistent solution: (BKNN, Γ/2) = (62~79, 74~104) MeV for fπ=90~120 MeV (Martin const.) only with Particle picture Higher pole? Re E(KN)In

Comparison of Theor. and Exp. results DISTO B = 103 ±3 ±5 MeV Γ = 118 ±8 ±10 MeV J-PARC E15 B ~ 16 MeV Γ ~ 110 MeV (Preliminary?) J-PARC E27 B ~ 95 MeV Γ ~ 162 MeV 0 [MeV] KbarNN thr. -103 πΣN thr. Double pole with a chiral potential (E-dep.) B = 15~22 Γ = 20~50 SIDDHARTA B = 21~32 Γ = 18~64 B = 60~80 Γ = 150~210 ccCSM+Feshbach Martin B = 9~16 Γ = 34~66 B = 67~89 Γ = 244~320 Faddeev-AGS Y. Ikeda, H. Kamano, T. Sato, PTP 124, 533 (2010) Enhancement of KbarN interaction (E-indep.) S. Maeda, Y. Akaishi, T. Yamazaki, Proc. Jpn. Acad., Ser. B 89, 418 (2013) Partial restoration of chiral symmetry? B = 102 VKN× 1.17 B = 52 pion-assisted dibaryon H. Garcilazo, A. Gal, NPA 897, 167 (2013) “ πΛN–πΣN system (Jπ = 2+, T = 3/2)” BπΣN = 12~20 Γ = 5~8

4. Fully coupled-channel CSM study (On-going)

Hij θ Just diagonalize the Hamiltonian matrix! KbarNN - KbarNN θ - πΣN - πΛN πΣN πΛN * Hij No channel elimination!!

Hamiltonian Wave function including 3 types of Jacobi coordinates Spatial part: Correlated Gaussian projected onto a parity eigenstate of B1B2, including 3 types of Jacobi coordinates

Complex eigenvalue distribution NN: Av18 pot. KbarN-πY: AY pot. Λ* pole BKN = 28 MeV, ΓπΣ /2 = 20 MeV KbarNN cont. The “K-pp” pole of AY potential : BKNN = 51 MeV, ΓπYN /2 = 16 MeV Λ*N cont. Scaling angle θ=30° Dimension = 6400 πΛN cont. πΣN cont.

5. Summary, future plans and remarks

5. Summary A prototype of Kbar nuclei “K-pp” = Resonance state of KbarNN-πYN coupled system “K-pp” is theoretically investigated in various ways: Chiral SU(3)-based potential (E-dep.) → Shallow binding … B(K-pp) = 10~25 MeV Phenomenological potential (E-indep.) → Deep binding … B(K-pp) = 50~90 MeV All theoretical studies predict B(K-pp) < 100 MeV. K-pp studied with “coupled-channel Complex Scaling Method + Feshbach projection” Used a Chiral SU(3)-based potential (Gaussian form in r-space) Self-consistency for KbarN complex energy (Field and Particle pictures) K-pp (Jπ=0-, T=1/2) … (B, Γ/2) = (20~30, 10~30) MeV (Martin constraint) (15~22, 10~25) MeV (SIDDHATA constraint) A candidate of self-consistent solution with Particle picture … Deeper binding and larger decay width K-pp (Jπ=0-, T=1/2) …. (B, Γ/2) = (60~80, 75~105) MeV (Martin constraint) “K-pp” has a double-pole structure similarly to Λ(1405)? Relation to the K-pp search experiments The signal observed in J-PARC E27 is considered to correspond to the lower pole of “K-pp”?? J-PARC E15 may pick up the higher pole of “K-pp”???

5. Future plans and remarks Fully coupled-channel calculation of K-pp (on-going) … E-dep. Chiral SU(3) pot. case, Detail study for the double pole structure, etc Application to resonances of other hadronic systems Remarks (to be considered): Need specrum calculations taking into reaction mechanism, for the comparison with experimental result Earlier works on 3He(in-flight K-, n) reaction: T. Koike and T. Harada, PRC80, 055208 (2009) J. Yamagata-Sekihara, D. Jido, H. Nagahiro and S. Hirenzaki, Phys. Rev. C 80, 045204 (2009) Non-mesic decay of “K-pp” (two nucleon absorption, “K-pp” --> YN)? All theoretical calculations of the “K-pp” pole position consider only mesic-decay mode, not non-mesic decay mode. Need to be careful when comparing with experimental results. Nature of Λ(1405) and KbarN interaction How strongly attractive is the KbarN interaction? “Λ(1405) vs Λ(1420)” -->> Latest work: Dr. T. Sekihara’s talk The poles obtained in theoretical study = on the complex energy plane Observables measured in experiments = on the real energy axis

Thank you for your attention! Cats in KEK Thank you for your attention! References: A. D., T. Inoue, T. Myo, NPA 912, 66 (2013) A. D., T. Myo, NPA 930, 86 (2014) A. D., T. Inoue, T. Myo, PTEP 2015, 043D02 (2015) A. D., T. Inoue, T. Myo, JPS Conf. Proc. (Proc. of HYP2015) (to be appeared )