Sol-gel rare-earth-doped glasses for solar cells

Slides:



Advertisements
Similar presentations
Request Dispatching for Cheap Energy Prices in Cloud Data Centers
Advertisements

SpringerLink Training Kit
Luminosity measurements at Hadron Colliders
From Word Embeddings To Document Distances
Choosing a Dental Plan Student Name
Virtual Environments and Computer Graphics
Chương 1: CÁC PHƯƠNG THỨC GIAO DỊCH TRÊN THỊ TRƯỜNG THẾ GIỚI
THỰC TIỄN KINH DOANH TRONG CỘNG ĐỒNG KINH TẾ ASEAN –
D. Phát triển thương hiệu
NHỮNG VẤN ĐỀ NỔI BẬT CỦA NỀN KINH TẾ VIỆT NAM GIAI ĐOẠN
Điều trị chống huyết khối trong tai biến mạch máu não
BÖnh Parkinson PGS.TS.BS NGUYỄN TRỌNG HƯNG BỆNH VIỆN LÃO KHOA TRUNG ƯƠNG TRƯỜNG ĐẠI HỌC Y HÀ NỘI Bác Ninh 2013.
Nasal Cannula X particulate mask
Evolving Architecture for Beyond the Standard Model
HF NOISE FILTERS PERFORMANCE
Electronics for Pedestrians – Passive Components –
Parameterization of Tabulated BRDFs Ian Mallett (me), Cem Yuksel
L-Systems and Affine Transformations
CMSC423: Bioinformatic Algorithms, Databases and Tools
Some aspect concerning the LMDZ dynamical core and its use
Bayesian Confidence Limits and Intervals
实习总结 (Internship Summary)
Current State of Japanese Economy under Negative Interest Rate and Proposed Remedies Naoyuki Yoshino Dean Asian Development Bank Institute Professor Emeritus,
Front End Electronics for SOI Monolithic Pixel Sensor
Face Recognition Monday, February 1, 2016.
Solving Rubik's Cube By: Etai Nativ.
CS284 Paper Presentation Arpad Kovacs
انتقال حرارت 2 خانم خسرویار.
Summer Student Program First results
Theoretical Results on Neutrinos
HERMESでのHard Exclusive生成過程による 核子内クォーク全角運動量についての研究
Wavelet Coherence & Cross-Wavelet Transform
yaSpMV: Yet Another SpMV Framework on GPUs
Creating Synthetic Microdata for Higher Educational Use in Japan: Reproduction of Distribution Type based on the Descriptive Statistics Kiyomi Shirakawa.
MOCLA02 Design of a Compact L-­band Transverse Deflecting Cavity with Arbitrary Polarizations for the SACLA Injector Sep. 14th, 2015 H. Maesaka, T. Asaka,
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Fuel cell development program for electric vehicle
Overview of TST-2 Experiment
Optomechanics with atoms
داده کاوی سئوالات نمونه
Inter-system biases estimation in multi-GNSS relative positioning with GPS and Galileo Cecile Deprez and Rene Warnant University of Liege, Belgium  
ლექცია 4 - ფული და ინფლაცია
10. predavanje Novac i financijski sustav
Wissenschaftliche Aussprache zur Dissertation
FLUORECENCE MICROSCOPY SUPERRESOLUTION BLINK MICROSCOPY ON THE BASIS OF ENGINEERED DARK STATES* *Christian Steinhauer, Carsten Forthmann, Jan Vogelsang,
Particle acceleration during the gamma-ray flares of the Crab Nebular
Interpretations of the Derivative Gottfried Wilhelm Leibniz
Advisor: Chiuyuan Chen Student: Shao-Chun Lin
Widow Rockfish Assessment
SiW-ECAL Beam Test 2015 Kick-Off meeting
On Robust Neighbor Discovery in Mobile Wireless Networks
Chapter 6 并发:死锁和饥饿 Operating Systems: Internals and Design Principles
You NEED your book!!! Frequency Distribution
Y V =0 a V =V0 x b b V =0 z
Fairness-oriented Scheduling Support for Multicore Systems
Climate-Energy-Policy Interaction
Hui Wang†*, Canturk Isci‡, Lavanya Subramanian*,
Ch48 Statistics by Chtan FYHSKulai
The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities.
Measure Twice and Cut Once: Robust Dynamic Voltage Scaling for FPGAs
Online Learning: An Introduction
Factor Based Index of Systemic Stress (FISS)
What is Chemistry? Chemistry is: the study of matter & the changes it undergoes Composition Structure Properties Energy changes.
THE BERRY PHASE OF A BOGOLIUBOV QUASIPARTICLE IN AN ABRIKOSOV VORTEX*
Quantum-classical transition in optical twin beams and experimental applications to quantum metrology Ivano Ruo-Berchera Frascati.
The Toroidal Sporadic Source: Understanding Temporal Variations
FW 3.4: More Circle Practice
ارائه یک روش حل مبتنی بر استراتژی های تکاملی گروه بندی برای حل مسئله بسته بندی اقلام در ظروف
Decision Procedures Christoph M. Wintersteiger 9/11/2017 3:14 PM
Limits on Anomalous WWγ and WWZ Couplings from DØ
Presentation transcript:

Sol-gel rare-earth-doped glasses for solar cells Francesco Enrichi Research Fellow, Centro Studi e Ricerche Enrico Fermi, Roma (Italy) Vinnmer Marie Curie Incoming Fellow, Luleå University of Technology, Luleå (Sweden) 1

Outline Introduction Downconversion in Tb3+/Yb3+ co-doped silica-hafnia glasses and glass ceramics Preliminary results on Ag-exchanged Tb3+/Yb3+ co-doped zirconia glasses and glass ceramics Conclusions and perspectives

Silicon solar cells: spectral response Spectral mismatch 930 nm X. Huang et al. Chem. Soc. Rev., 2013,42, 173-201

Rare earth ions have suitable energy level structure for energy conversion processes One UV or blue photon Two red / NIR photons (Yb max. emission @ 980 nm) L. Wondraczek et al., Adv. Sci. 2015, 2, 1500218

Two infrared photons @ 980 nm Choice of the rare earths Choice of the host material SiO2-HfO2 glass-ceramics SiO2-ZrO2 glass-ceramics Tb3+-Yb3+ Combine the advantages of glasses and the better spectroscopic properties of crystals Silica-based coatings, waveguides, fibers Low phonon energies: HfO2 ~ 700 cm-1 ; ZrO2 ~ 470 cm-1 High refractive index (500 nm): HfO2 ~ 2.13 ; ZrO2 ~ 2.18 One blue photon @ 488nm Two infrared photons @ 980 nm

30 min. @ 1000 °C in order to nucleate HfO2 nanocrystals Sample preparation SiO2-HfO2 glass and glass-ceramics Thermal treatments TEOS + EtOH + H2O + HCl Si 50’’ @900 °C after each dip 1h stirring 5 min. @900 °C after 20 dips HfOCl2 + EtOH Hf GLASS (G) Tb(NO3)3 Yb(NO3)3 RE 30 min. @ 1000 °C in order to nucleate HfO2 nanocrystals 16h stirring GLASS-CERAMICS (GC) DIP COATING G. Alombert-Goget et al., Proc. SPIE 7598 (2010) 75980P–1/9. G. Alombert-Goget et al., Opt. Mater. 33 (2010) 227–230.

Composition: 70% SiO2 – 30% HfO2 SiO2-HfO2 glass and glass-ceramics Samples properties Composition: 70% SiO2 – 30% HfO2 [Tb] : [Yb] = 1 : 4 (best rate from previous studies) [Tb]+[Yb] = 5 ÷ 21 % (previous studies 1 ÷ 5 %) G (900 °C ann.) and GC (1000 °C ann.) samples Layer thickness ~ 0,7 – 0,8 µm G. Alombert-Goget et al., Proc. SPIE 7598 (2010) 75980P–1/9. G. Alombert-Goget et al., Opt. Mater. 33 (2010) 227–230. A. Bouajaj et al., Opt. Mat., 2016,52, 62-68

Structural characterization: XRD G GC * * Phase separation and formation of HfO2 nanocrystals of about 3-4 nm in GC samples * tetragonal HfO2 (ICSD card No 85322)

Structural characterization: TEM 9% G 9% GC Phase separation and formation of HfO2 nanocrystals of about 3-4 nm in GC samples A. Bouajaj et al., Opt. Mat., 2016,52, 62-68

Optical characterization: PL excitation

Optical characterization: PL emission 9% GC Tb3+ emission decrease when Yb3+ is added Indication of energy-transfer

𝑷𝑳 𝒅𝒆𝒄𝒓𝒆𝒂𝒔𝒆 = 𝟏 − 𝑷𝑳 𝑻𝒃−𝒀𝒃 𝑷𝑳 𝑻𝒃 Optical characterization: intensity decrease 𝑷𝑳 𝒅𝒆𝒄𝒓𝒆𝒂𝒔𝒆 = 𝟏 − 𝑷𝑳 𝑻𝒃−𝒀𝒃 𝑷𝑳 𝑻𝒃 Sample Glass Glass-ceramics RE 5 34,5 % 40,2 % RE 7 37,9 % 61,8 % RE 9 67,7 %

Optical characterization: intensity decrease 9% G and GC Different Yb3+ emission in G and GC samples Indication of different RE environment

Optical characterization: energy-transfer 5 𝐷 𝟒 : 𝟏 𝝉 𝒎𝒆𝒂𝒔 = 𝟏 𝝉 𝒓 + 𝟏 𝝉 𝒏𝒓 Energy-transfer efficiency 𝜼 𝑬𝑻 = 1 - 𝑰 𝑻𝒃+𝒀𝒃 𝒅𝒕 𝑰 𝑻𝒃 𝒅𝒕 TOTAL efficiency 𝜼 𝒕𝒐𝒕 = 𝜼 𝑽𝑰𝑺 + 𝜼 𝑵𝑰𝑹 = 𝜼 𝒓, 𝑻𝒃 (1 - 𝜼 𝑬𝑻 ) + 𝟐 𝜼 𝑬𝑻 ≈ 1 + 𝜼 𝑬𝑻

Optical characterization 𝟓 𝑫 𝟒 𝟕 𝑭 𝑱 lexc = 355 nm lem = 543.5 nm Tb3+ emission lifetime decreases when Yb3+ is added Tb3+ emission lifetime decreases more and more with RE content

Optical characterization

Optical characterization Maximum efficiency for [Tb+Yb] = 19% ET = 94% EQE = 194%

Rate equations: direct transfer vs virtual level transfer NaYF4:Tb3+,Yb3+ 50SiO2-20Al2O3-27CaF2:Tb3+,Yb3+ Duan et al., J.Appl.Phys., 2011,110, 113503; Duan et al., Opt. Lett., 2012,37, 521-523

Optical characterization Main contribution in our samples seems direct transfer from the 5D4 Tb3+ excited state Possible role of non-accounted processes: back-transfer, excited state absorption, cross-relaxation plus multiphonon ? Direct quantum efficiency measurements could help in better understanding this point

Outline Introduction Downconversion in Tb3+/Yb3+ co-doped silica-hafnia glass and glass ceramics Preliminary results on Ag-exchanged Tb3+/Yb3+ co-doped zirconia glass and glass ceramics Conclusions and perspectives

Why Ag doping? Ag introduction by ion exchange Broadband excitation of Er3+ ions 1.54 µm emission

Sample preparation SiO2-ZrO2 glass and glass-ceramics Thermal treatments TEOS + EtOH + H2O + HCl Si 3 min. @700 °C after each dip 1h stirring Zr propoxide + Acac + EtOH 15 min. @700 °C after 10 dips Zr GLASS (G) Na Na-Ac + MeOH 1h @ 1000 °C in order to nucleate ZrO2 nanocrystals RE Tb(NO3)3 Yb(NO3)3 GLASS-CERAMICS (GC) 16h stirring DIP COATING

Ag+-Na+ ion-exchange Na-doped coating Molten salt bath 1 mol% of AgNO3 in NaNO3 Ion-exchange process 1h @ 350 °C \ Ag+ Na+ Ag+ Followed by thermal annealing in air Ag aggregation 1h @ 380 °C 1h @ 440 °C

Composition: 70% SiO2 – 30% ZrO2 + additional 10% Na Samples properties SiO2-ZrO2 glass and glass-ceramics Composition: 70% SiO2 – 30% ZrO2 + additional 10% Na G (700 °C ann.) and GC (1000 °C ann.) samples Layer thickness ~ 0,5 µm G0 / GC0 : [Tb] = 0% [Yb] = 0% G1 / GC1 : [Tb] = 1% [Yb] = 0% G4 / GC4 : [Tb] = 0% [Yb] = 4% G5 / GC5 : [Tb] = 5% [Yb] = 4% + Ag exchange (8 samples) + two annealing T (16 samples) 8 starting samples

XRD preliminary check SPIN-COATING deposited samples 4 layers @ 1000 rpm - 1 min.

RBS measurements (Rutherford Backscattering Spectrometry)

RBS spectra comparison Tb, Yb are detected and follow the expected trend Ag is clearly detected in the exchanged samples

Quantitative analysis Matrix nominal: Si 70, Zr 30, O 200, Na 10 G0: Si 68, Zr 29, O 200, Na 10, Hf 0.25

Quantitative analysis Matrix nominal: Si 70, Zr 30, O 200, Na 10 G0: Si 68, Zr 29, O 200, Na 10, Hf 0.25 G1: Si 65, Zr 29, O 200, Na 10, Hf 0.25, TbYb 0.9

Quantitative analysis Matrix nominal: Si 70, Zr 30, O 200, Na 10 G0: Si 68, Zr 29, O 200, Na 10, Hf 0.25 G1: Si 65, Zr 29, O 200, Na 10, Hf 0.25, TbYb 0.9 G4: Si 65, Zr 29, O 200, Na 10, Hf 0.25, TbYb 4.2

Quantitative analysis Matrix nominal: Si 70, Zr 30, O 200, Na 10 G0: Si 68, Zr 29, O 200, Na 10, Hf 0.25 G1: Si 65, Zr 29, O 200, Na 10, Hf 0.25, TbYb 0.9 G4: Si 65, Zr 29, O 200, Na 10, Hf 0.25, TbYb 4.2 G5: Si 67, Zr 30, O 200, Na 10, Hf 0.25, TbYb 5.3

Quantitative analysis Matrix nominal: Si 70, Zr 30, O 200, Na 10 G0: Si 68, Zr 29, O 200, Na 10, Hf 0.25 G1: Si 65, Zr 29, O 200, Na 10, Hf 0.25, TbYb 0.9 G4: Si 65, Zr 29, O 200, Na 10, Hf 0.25, TbYb 4.2 G5: Si 67, Zr 30, O 200, Na 10, Hf 0.25, TbYb 5.3 GC0: Si 67, Zr 32, O 200, Na 10, Hf 0.25

Quantitative analysis Matrix nominal: Si 70, Zr 30, O 200, Na 10 G0A: Si 68, Zr 29, O 200, Na 10, Hf 0.25, Ag x Thickness obtained by using 1.9 g/cm3 for sol-gel SiO2 280 nm Ag 3 40 nm Ag 5.5

Quantitative analysis Matrix nominal: Si 70, Zr 30, O 200, Na 10 GC0A: Si 67, Zr 32, O 200, Na 10, Hf 0.25, Ag x Thickness obtained by using 1.9 g/cm3 for sol-gel SiO2 140 nm Ag 1 180 nm Ag 2

Quantitative analysis Matrix nominal: Si 70, Zr 30, O 200, Na 10 G5A: Si 70, Zr 29, O 220, Na 0, Hf 0.25, TbYb 5.5, Ag x 280 nm Ag 2.5 80 nm Ag 5 Thickness obtained by using 1.9 g/cm3 for sol-gel SiO2

Conclusions and perspectives Downconversion in Tb3+ + Yb3+ codoped SiO2-HfO2 glasses and glass-ceramics Maximum efficiency 194 % for 19 at.% [Tb+Yb] deeper investigation of the ET process via rate-equation modelling / simulations direct efficiency measurement by an integrating sphere Preparation of Na-doped SiO2-ZrO2 glasses and glass-ceramics Introduction of Ag in the films by Ag+-Na+ ion-exchange process up to 3-5% optimization of ion-exchange conditions (homogeneity, higher Ag concentration) study and optimization of the post-exchange annealing optical characterization

CNR-Italy / CNRST-Morocco bilateral project 2014-15 MAECI bilateral project PLESC - Centro Fermi Italy / University of Witwatersrand South Africa 2015-18 CNR-Italy / CNRST-Morocco bilateral project 2014-15 VINNMER Marie Curie Incoming Project - Nano2solar 2016-18 37

CNR-Italy / CNRST-Morocco bilateral project 2014-15 Thank you! MAECI bilateral project PLESC - Centro Fermi Italy / University of Witwatersrand South Africa 2015-18 CNR-Italy / CNRST-Morocco bilateral project 2014-15 VINNMER Marie Curie Incoming Project - Nano2solar 2016-18 38

R 5% 7% 9%

Ag doping

Choice of rare-earth couples Donor: absorbs incident photons from the sun and transfer its energy to the acceptor rare‐earth : Pr3+, Tm3+, Tb3+, relatively strong absorption in the blue Er3+ : many mean or weak absorption bands in the UV‐blue‐green Acceptor: emits the photons that will be absorbed by the PV cell Yb3+, single excited state ‐ Emission at ~1000 nm absorbed efficiently by Si solar cell Donor/acceptor Frequency conversion Pr3+/Yb3+ Blue (440nm) → NIR (2 emitted photons: 1000 nm) Tm3+/Yb3+ Blue (478nm) → NIR (2 emitted photons: 1000 nm) Tb3+/Yb3+ Blue (485nm) → NIR (2 emitted photons: 1000 nm) Ce3+/Yb3+ UV‐blue (4f‐5d 330 borate to 450 nm YAG) → NIR Ho3+/Yb3+ Blue (~450 nm)→NIR (2 emitted photons: 985+1180 nm) Er3+/Yb3+ Violet‐Blue‐Green → NIR (2 emitted photons: 1000 + 1500 nm)

Energy Spatial extension Filling orbital (optical properties) Outer electrons (chemical properties) Spatial extension

Optical characterization 𝟓 𝑫 𝟒 𝟕 𝑭 𝑱 lexc = 355 nm lem = 543.5 nm G GC

Optical characterization 𝟓 𝑫 𝟒 𝟕 𝑭 𝑱 lexc = 355 nm lem = 543.5 nm 108 % 110 % 126 % G 125 % 132 % 154 % GC

Optical characterization 𝟓 𝑫 𝟒 𝟕 𝑭 𝑱 lexc = 355 nm lem = 543.5 nm G GC

Optical characterization 𝟓 𝑫 𝟒 𝟕 𝑭 𝑱 lexc = 355 nm lem = 543.5 nm 129 % 138 % 144 % G 145 % 171 % 179 % GC