Substrates and nano-structured surfaces for future GW observatories

Slides:



Advertisements
Similar presentations
Chris A. Mack, Fundamental Principles of Optical Lithography, (c) 2007
Advertisements

Optical sources Lecture 5.
Coating-reduced interferometer optics Resonant waveguide gratings S. Kroker, T. Käsebier, E.-B. Kley, A. Tünnermann.
COMPUTER MODELING OF LASER SYSTEMS
Harald Lück, AEI Hannover 1 GWADW- May, 10-15, 2009 EU contract #
Transportation of Ultra-Stable Light via Optical Fiber Emily Conant Bard College, California Institute of Technology Mentors: Evan Hall, Rana Adhikari,
Lecture 1 Review of Wave optics Today Introduction to this course Light waves in homogeneous medium Monochromatic Waves in inhomogeneous medium.
Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers Marie Kasprzack Laboratoire de l’Accélérateur.
Fiber Optic Light Sources
Optical Components Ajmal Muhammad, Robert Forchheimer
Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
Alban REMILLIEUX3 rd ILIAS-GW Annual General Meeting. London, October 26 th -27 th, New coatings on new substrates for low mechanical loss mirrors.
Waveguide High-Speed Circuits and Systems Laboratory B.M.Yu High-Speed Circuits and Systems Laboratory 1.
STREGA WP1/M1 mirror substrates GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
A. Bunkowski Nano-structured Optics for GW Detectors 1 A.Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel in collaboration with T.
Thermal noise from optical coatings Gregory Harry Massachusetts Institute of Technology - on behalf of the LIGO Science Collaboration - 25 July
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
Gravitational Wave Detection Using Precision Interferometry Gregory Harry Massachusetts Institute of Technology - On Behalf of the LIGO Science Collaboration.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
DFG-NSF Astrophysics Workshop Jun 2007 G Z 1 Optics for Interferometers for Ground-based Detectors David Reitze Physics Department University.
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, H. Armandula 3, R. Bassiri 1, E. Chalkley 1 C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
Cascaded Solid Spaced Filters for DWDM applications
Friedrich-Schiller-Universität Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz19 th May GWADW Kyoto 1 Losses in.
1st Advanced Virgo Review – November 3-4, 2008 – L. Pinard 1 Mirrors Sub-System Overview  Introduction  Scope of the subsystem, main tasks  Substrates.
V. Sonnenschein, I. D. Moore, M. Reponen, S. Rothe, K.Wendt.
LIGO LaboratoryLIGO-G R Coatings and Their Influence on Thermal Lensing and Compensation in LIGO Phil Willems Coating Workshop, March 21, 2008,
Janyce Franc-Kyoto-GWADW1 Simulation and research for the future ET mirrors Janyce Franc, Nazario Morgado, Raffaele Flaminio Laboratoire des Matériaux.
Janyce Franc Effect of Laguerre Gauss modes on thermal noise Janyce Franc, Raffaele Flaminio, Nazario Morgado, Simon Chelkowski, Andreas Freise,
Progress in LIGO Coating Development Gregory Harry Massachusetts Institute of Technology - LIGO Laboratory - March 21, 2008 Coating Workshop - Caltech.
Modelling and Simulation of Passive Optical Devices João Geraldo P. T. dos Reis and Henrique J. A. da Silva Introduction Integrated Optics is a field of.
Optics related research for interferometric gravitational wave detectors S. Rowan for the Optics working group of the LIGO Scientific Collaboration SUPA,
Heinert et al Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert,
1/16 Nawrodt, Genoa 09/2009 An overview on ET-WP2 activities in Glasgow R. Nawrodt, A. Cumming, W. Cunningham, J. Hough, I. Martin, S. Reid, S. Rowan ET-WP2.
Studies of materials to reduce coating thermal noise K. Craig 1, I.W. Martin 1, S. Reid 2, M. Abernathy 1, R. Bassiri 1,4, K. Borisenko 3, A. Cumming 1,
The coating thermal noise R&D for the 3rd generation: a multitechnique investigation E. Cesarini 1,2), M.Prato 3), M. Lorenzini 2) 1)Università di Urbino.
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, E. Chalkley 1, H. Armandula 3, R. Bassiri 1, C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
Materials 2 G. Cole (Vienna) – Crystalline Coatings S. Koker (Jena) – Waveguide Coatings R. Nawrodt (Jena) – Silicon research GWADW 2011 – La Biodola,
Department of Physics & Astronomy Institute for Gravitational Research Scottish Universities Physics Alliance Brownian thermal noise associated with attachments.
Narrow-band filtering with resonant gratings under oblique incidence Anne-Laure Fehrembach, Fabien Lemarchand, Anne Sentenac, Institut Fresnel, Marseille,
0 Frequency Gain 1/R 1 R 2 R 3 0 Frequency Intensity Longitudinal modes of the cavity c/L G 0 ( ) Case of homogeneous broadening R2R2 R3R3 R1R1 G 0 ( )
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Propagation of optical rays through a volume Bragg grating in transmitting (dotted.
Optical Interference Coatings: from advanced to future GW detectors L. Balzarini, E. Berthélémy, G. Cagnoli, J. Degallaix, V. Dolique, R. Flaminio. D.
Optical Sciences CenterThe University of Arizona ERROR ANALYSIS FOR CGH OPTICAL TESTING Yu-Chun Chang and James Burge Optical Science Center University.
All-Dielectric Metamaterials: A Platform for Strong Light-Matter Interactions Jianfa Zhang* (College of Optoelectronic Science and Engineering, National.
1 Cascina – October 19, 2011 ASPERA Forum Laurent Pinard Substrates, Polishing, Coatings and Metrology for the 2 nd generation of GW detector Laurent PINARD.
STREGA WP4 coating development GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
1 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Waveguide grating mirrors Insights from the inside Future Past Present Daniel Friedrich, Michael Britzger,
Evaluation of Polydimethlysiloxane (PDMS) as an adhesive for Mechanically Stacked Multi-Junction Solar Cells Ian Mathews Dept. of Electrical and Electronic.
Ab Initio Property Prediction with Density Functional Theory (DFT) Relevant to Coating Thermal Noise Laser Interferometer Gravitational-Wave Observatory.
Physicist view of Diffraction grating
Deep Chatterjee IISER Kolkata Mentors: Koji Arai; Matthew Abernathy
Mechanical Loss in Silica substrates
Studies of some properties of Hydroxide-Catalysis Bonds
Thermal noise calculations for cryogenic optics
Synopsis by Maria Ruiz-Gonzalez 12/8/16
L. Glover(1,3), R. DeSalvo(1,3), B. Kells(2), I. Pinto(3)
Nergis Mavalvala Aspen January 2005
Thermal noise and thermal deformations of mirrors
Current status of coating research in Glasgow
Laboratoire des Matériaux Avancés - Lyon
Thermal noise reduction through LG modes
Nanostructured Optics
Flat-Top Beam Profile Cavity Prototype: design and preliminary tests
Improving Solar Cell Efficiencies through Periodicity
Anti-Reflective Coatings
Flat-Top Beam Profile Cavity Prototype
Some features of NV. Vincent Loriette.
Sensitivity curves beyond the Advanced detectors
Presentation transcript:

Substrates and nano-structured surfaces for future GW observatories ASPERA-Forum 20/10/2011 Introduction- Brownian thermal noise of mirrors Functionality of resonant waveguide gratings (RWGs) RWGs for mirrors RWGs for beam splitters Fabrication Major issues : (1) accuracy (2) mechanical features Outlook & conclusion E.-B. Kley , S. Kroker, T. Käsebier, F. Brückner, F. Fuchs, A. Tünnermann

~ Introduction – Brownian thermal noise of mirrors fluctuations of surface -> phase of reflected light randomly changed/ distortion in wavefront Brownian thermal noise of mirrors light ~ f large T=300 K f->0 T->0 Sx Sx Sx f Fluctuation-Dissipation-Theoreme: loss (mechanical dissipation) thermal noise analog: R f

~ reduce temperature reduce coating thickness use low loss materials Low loss at low temperatures: crystalline materials Functionalization of surface additional coatings reduce temperature reduce coating thickness use low loss materials inhomogeneously distributed losses ~ (IFK U Jena) Harry et al., CQG 19 (2002) Welton, Callen, (1953)

high reflectivity … metal coating dielectric multilayer stack structured surface (RWGs) … amorphous coatings crystalline coatings AlGaAs/GaAs (U Vienna, Aspelmaier) monolithic non-monolithic large loss large thickness Crystalline/RWG hervorheben für high-preciscion metrology - > RWG – Substrat, T-shape, graues substrat minimize thickness approp. materials absorption reflectivity by multiple beam interference reflectivity by resonant light coupling

nh nl Functionality of resonant waveguide gratings (RWGs) first diffraction order in grating material only zeroth diffraction order in free space nh nl -1 1 Mit einelne ordnungen , transmission T0

Tantala grating on silica RWGs for mirrors RWGs on silica Tantala grating on silica silica as low-index layer and substrate Brückner et al., Opt. Express (2008)

RWGs on silicon cryogenic temperatures, low mechanical loss ~10-8 l=1064 nm Ta2O5, TiO2 l=1550 nm silicon high index low index silica high index n≈3.5 silicon Better: use crystalline silicon only Monolithisch…. Mit hinmalen, führungseigenschaften oben stärker No additional coating!

Not measured at predicted maximum wavelength, Brückner et al., PRL (2010)

a0 RWGs for beam splitters Large angular tolerances necessary. incident light a0 Skizze von einzelnem daneben, beugungsordnung mit reinmalen, struktur noch n bissel verschnörkseln Light incident at larger angles mainly transmitted. Kroker et al., Op. Letters (2011) Kroker et al., Opt. Express (2011)

enhanced angular tolerances double T-shape 2D T-shape

a0 generation of additional diffraction orders modulation of the RWG perturbation of the mirror incident light a0 R-1 depth modulation fill factor modulation Periodenmodulation noch mal deutlicher hervorheben control of the cavity’s finesse via diffraction efficiency R-1

Typical fabrication procedure for monolithic RWGs: “isotropic” etching e-beam exposure development anisotropic etching + sidewall passivation Seitenwandpassivierung mit einmalen? resist chromium/ hard mask silicon silica

non-monolithic RWGs: Material combinations: silicon-diamond e-beam exposure development anisotropic etching isotropic (wet) etching Material combinations: silicon-diamond silicon-silica resist chromium/ hard mask silicon silica/diamond

How good is e-beam writing? Wichtigstes is effizienz, wieviel geht verloren?... Weit praktisch kommen, wissen wir nicht, glauben dass es min. eine 9 mehr wird Wavefront and scattered light How good is e-beam writing… usually stitching errors…. Wavefront Aberration, parasitiv diffraction orders, straylight

Grating accuracy wave-front measurement (1 µm period grating + technology, Littrow-Mount, l=633 nm) 19 mm + 6.3 nm 50mm period variation [pm] - 6.6 nm position [mm] wavefront placement PV 12.8 nm <10.3 nm rms 1.4 nm <1.1 nm period variation < 5 pm significantly better than interferometric gratings

Problem: Lithographic process induces line-edge roughness due to statistics 10nm 100 nm lines and spaces HSQ (1300 µC/cm2) FEP 171 (9.5 µC/cm2) Wissen noch nicht, wo die grenzen liegen, sind noch weit entfernt, von technologiebedingten grenzen 10nm

variation width ~ 100 pm intensity nonspecular light less than 1 ppm Influence of period variation on scattering and phase of reflected light Fabrication or vibration?, variation width ~ 100 pm intensity nonspecular light less than 1 ppm Can performance be affected by mechanical vibrations of grating ridges?

Some remarks on potential vibrations of ridges Mechanical eigenfrequencies of T-shape structures material combi-nation structure type frequency basic mode (MHz) frequency 1st mode (MHz) Si-SiO2 single 155 1020 Si-dia 545 2540 Si mono 235 1460 double 25 302 140 794 70 434 FEM calculations with Ansys shape of basic mode Si-SiO2-double noch mal überprüfen mechanical eigenfrequencies far beyond detection band

Coupling of mechanical oscillations to vibrations in the detection band? frequency conversion: Nonlinear process required to convert mechanical down to relevant frequency range. detection band frequency amplitude eigen- frequency f1 “mixing signal” f2 “difference signal” 10 MHz spectrum f1 f2 two interfering vibrations (linear process): In any case noise induced vibrations uncorrelated; WANN kommt man in der Elastizität in den nichtlinearen Bereich? Sub pm? - > messungen canti… auslenkung cm-bereich keine nichtlinearen effekte erkennbar-… unwahrscheinlich dass strukturen…. nonlinear process: f1 sum diff. f2

Minimize effects due to vibrations: Encapsulated grating problem: small perturbation of waveguide narrowband (small perturbation), small parameter tolerances old concept: Brückner et al., Opt. Express. (2009) alternative concept: realization: bonding, overcoating

Influence of surface structures on mechanical loss surface loss U Jena/ U Glasgow unpolished wet etched It’s not only about surface roughness dry etched

Surface loss of structured flexures loss about factor of 2 smaller Possible surface loss mechanisms – position change of surface particles/molecules – switching of „dangling“ bonds – terminated surface layers (e.g. hydrogen, fluorine) – micro-cracks in the surface from mechanical polishing

Dielectric layer stack Nano-structures (RWG) amorphous crystalline monolithic Non-monolithic Thermal noise -- high +++ low ++ low + medium Substrate ++ all 0 GaAs + silicon, … ++ all Scalability ++ - ? + Straylight ++? availability ++ yes 0 in progress - Low thermal noise - Substrate?? GaAs

Conclusion & Outlook RWG allow for high reflectivities and low coating thickness mirrors with high angluar tolerance possible diffractive elements based on RWGs possible technological limits not yet achieved line edge roughness maybe limiting influence of mechanical vibration on optical performance unlikely extensive characterization of scattered light planned influence of surface modification on mechanical loss to be characterized Was bringt uns ansatz… wo können probleme liegen……

Thank you for your attention! Special thanks to: M. Banasch, D. Lehr, H. Schmidt, D. Schelle, W. Gräf, T. Weber Thank you for your attention! This research is supported by the DFG within „Sonderforschungsbereich Transregio 7“.