Oddelenie kozmickej fyziky

Slides:



Advertisements
Similar presentations
BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE FOR SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE.
Advertisements

1 Belov A., Baisultanova L., Eroshenko E., Yanke V. (IZMIRAN, Russia), Mavromichalaki H. (Athens University, Greece), Pchelkin V. (PGI, Russia) Magnetospheric.
Investigation of daily variations of cosmic ray fluxes in the beginning of 24 th solar activity cycle Ashot Chilingarian, Bagrat Mailyan IHY-ISWI Regional.
S. Della Torre 1,2, P. Bobik 5, G. Boella 1,3, M.J. Boschini 1,4, C. Consolandi 1, M. Gervasi 1,3, D. Grandi 1, K. Kudela 5, F. Noventa 1,3, S. Pensotti.
Cosmic Ray Using for Monitoring and Forecasting Dangerous Solar Flare Events Lev I. Dorman (1, 2) 1. Israel Cosmic Ray & Space Weather Center and Emilio.
NMDB Kiel Meeting, 3-5/12/2008 On the possibility to use on-line one-minute NM data of NMDB network and available from Internet satellite CR data for.
Chapter 8 The Sun – Our Star.
4/18 6:08 UT 4/17 6:09 UT Average polar cap flux North cap South cap… South cap South enter (need to modify search so we are here) South exit SAA Kress,
Study of Galactic Cosmic Rays at high cut- off rigidity during solar cycle 23 Partha Chowdhury 1 and B.N. Dwivedi 2 1 Department of Physics, University.
Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd March 2005 A 3D cosmic ray detector on the Moon X. Moussas University.
George W.S. Hou & M.A. Huang Center for Cosmology and Particle Astrophysics Department of Physics, National Taiwan University, 1, Sec. 4, Roosevelt Rd.,Taipei,
From Geo- to Heliophysical Year: Results of CORONAS-F Space Mission International Conference «50 Years of International Geophysical Year and Electronic.
CHAPTER 1: Discovering the Night Sky—
The Sun Chapter 29 Section 29.2 and Spaceweather.
Radiation conditions during the GAMMA-400 observations:
CR variation during the extreme events in November 2004 Belov (a), E. Eroshenko(a), G. Mariatos ©, H. Mavromichalaki ©, V.Yanke (a) (a) IZMIRAN), ,
Solar Weather and Tropical Cyclone Activity Abstract Worldwide tropical cyclone energy and frequency data was obtained from the Unisys Weather database.
1 Performance aspects of the instrument M. Bertaina Univ. Torino & INFN EUSO Balloon Phase A Review Meeting, CNES Toulouse, February 2 nd 2012.
- Functional Requirements - Background - Examples of expected Signal Track - An “idea” of angular resolution EUSO-BALLOON DESIGN REVIEW, , CNES.
Evaluation of the flux of CR nuclei inside the magnetosphere P. Bobik, G. Boella, M.J. Boschini, M. Gervasi, D. Grandi, K. Kudela, S. Pensotti, P.G. Rancoita.
A.V. Belov 1, E. A. Eroshenko 1, H. Mavromichalaki 2, V.A. Oleneva 1, A. Papaioannou 2, G. Mariatos 2, V. G. Yanke 1 (1) Institute of Terrestrial Magnetism,
G.K. Garipov 1, B.A. Khrenov 1, P.A. Klimov 1, V.S. Morozenko 1, M.I. Panasyuk 1, V.I. Tulupov 1, V.M. Shahparonov 1, S.A. Sharakin 1, S.I. Svertilov 1,
Space Science MO&DA Programs - September Page 1 SS It is known that the aurora is created by intense electron beams which impact the upper atmosphere.
Ground level enhancement of the solar cosmic rays on January 20, A.V. Belov (a), E.A. Eroshenko (a), H. Mavromichalaki (b), C. Plainaki(b), V.G.
1 IGY The ALERT signal of ground level enhancements of solar cosmic rays: physics basis, the ways of realization and development Anashin V., Belov A.,
P. Bobik, G. Boella, M. J. Boschini, M. Gervasi, D. Grandi, K. Kudela, S. Pensotti, P.G. Rancoita 2D Stochastic Monte Carlo to evaluate the modulation.
NMDB - the European neutron monitor database Karl-Ludwig Klein, for the NMDB consortium.
E.Plagnol - TA/TALE feb Acceptance and Counting Rates of EUSO ë Detecting UHECR from space ë The EUSO detector : Who does what. ë Some characteristics.
Cosmic rays and solar flares Draw in the back of your book the life cycle of a star.
The spatial and temporal distribution of solar and galactic cosmic rays S. V. Tasenko 1, P. V. Shatov 1, I. A. Skorokhodov 1, I. V. Getselev 1,2, M. Podzolko.
Topics in Space Weather Earth Atmosphere & Ionosphere
Radiation Storms in the Near Space Environment Mikhail Panasyuk, Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University.
EUSO Atmospheric Monitoring from Space M.Teshima on behalf of the EUSO collaboration MPI für Physik, München (Werner-Heisenberg-Institut)
Daniel Matthiä(1)‏, Bernd Heber(2), Matthias Meier(1),
Athens University – Faculty of Physics Section of Nuclear and Particle Physics Athens Neutron Monitor Station Study of the ground level enhancement of.
It is considered that until now in the 24th cycle of solar activity 2 ground level enhancements of solar cosmic rays (GLEs) are registered: on May 17,
Measurement of the CR light component primary spectrum B. Panico on behalf of ARGO-YBJ collaboration University Rome Tor Vergata INFN, Rome Tor Vergata.
 Viewing the Universe Chapter 26 Section 1. Why study astronomy?  By studying the stars, astronomers have been able to learn more about the Earth and.
Modeling of secondary cosmic ray spectra for Solar Cycles 23
JEM-EUSO experiment for extreme energy cosmic rays observation
Lee-Anne McKinnell and Mpho Tshisaphungo
GOES Data Status Mutual Benefits of NASA THEMIS and NOAA GOES
Solar gamma-ray and neutron registration capabilities of the GRIS instrument onboard the International Space Station Yu. A. Trofimov, Yu. D. Kotov, V.
Status of the KLYPVE-EUSO detector for UHECR study on board the ISS
2016 Solar Storms with NASA/NOAA GOES-R Satellite Primed to Support Space Weather Predictive Capabilities On 20 December 2016 Earth encountered a stream.
ESA SSA Measurement Requirements for SWE Forecasts
The EUSO-SPB mission Valentina Scotti INFN Sezione di Napoli.
Layers of the Atmosphere
Search for Cosmic Ray Anisotropy with the Alpha Magnetic Spectrometer on the International Space Station G. LA VACCA University of Milano-Bicocca.
ARTEMIS – solar wind/ shocks
THEMIS and Space Weather
Solar Modulation Davide Grandi AMS Group-INFN Milano-Bicocca.
Department of Space Physics: Detached Laboratory at Lomnický štít (LS)
Activity Report: Slovakia
“Expected Performances of the JEM-EUSO mission”
Investigations of CME in muon flux detected in hodoscopic mode
ESAF Euso Simulation and Analysis Framework
R. Bucˇık , K. Kudela and S. N. Kuznetsov
V. M. Lipunov, E. S. Gorbovskoy
THE SUN The star we see by day.
Yuki Takagi1*, Kazuo Shiokawa1, Yuichi Otsuka1, and Martin Connors2  
Ulysses COSPIN High Energy Telescope observations of cosmic ray and solar energetic particles intensities since its distant Jupiter flyby in 2004 R.B.
Proxima (TRAPPIST1) Exreme Events
About shape of the interplanetary shock front
York University Coupling of geomagnetic disturbances and GCRs flux with cloud covering and TOC at Abastumani Goderdzi DIDEBULIDZE, Tekle DIDEBULIDZE (Tbilisi.
On the relative role of drift and convection-diffusion effects in the long-term CR variations on the basis of NM and satellite data Lev Dorman (1, 2) Israel.
Relating Mars Observations with Earth Observations Odyssey/GOES Energetic Particle Data Comparison ( ) Ron Turner, John Starcher, Matt Rudy.
NMDB - the European neutron monitor database
Grades 9-12: Introduction
CORONAL MASS EJECTIONS
Presentation transcript:

Oddelenie kozmickej fyziky 2011 15. december 2011

Personálne zloženie BALÁŽ Ján BOBÍK Pavol BUČÍK Radoslav KOLLÁR Vladimír KUDELA Karel LANGER Ronald PASTIRČÁK Blahoslav SLIVKA Marián STRHÁRSKÝ Igor ŠTETIAROVÁ Jana ŠTEFÁNIK Samuel TOMIČOVÁ Anna 6 vedeckí pracovníci 4 odborní VŠ pracovníci 2 odborní pracovníci 1 interný phd študent 1 externá phd študentka

Projekty riešené na OKF Projekty Slovenskej vedeckej grantovej agentúry VEGA pre fyziku MVTS podpora SAV ŠF CKV 2. etapa, 1.3.2010 – 28.2.2013 celkom 612 598 €, Štúdium fyzikálnych procesov v magnetosfére a heliosfére prostredníctvom energetických kozmických častíc, Hlavný riešiteľ za OKF: Karel Kudela Podané: Cosmic Ray variability near Earth: heliospheric and magnetospheric processes, APVV VV 2011 Číslo Hlavný riešiteľ Názov projektu ∑ 2/0081/10 Karel Kudela Energetické kozmické častice a ich úloha v kozmickom počasí 2010 - 19641 € 2011 - 15954 € 2/0094/10 Ján Baláž Spektrometria kozmických energetických častíc na palube vedeckých satelitov 2010 - 8389 € 2011 - 3049 € Číslo Hlavný riešiteľ Názov projektu ∑ COST 803 Karel Kudela Vývoj produktov a služieb pre kozmické počasie v Európe 4000 € / 2011 JEM EUSO Kozmické Observatórium Extrémneho Vesmíru na palube Japonského Experimentálneho Modulu 1500 € / 2010 20000 € / 2011

Publikácie (CC) 1. Kuznetsov Sergei N., Kurt Victoria G., Yushkov Boris Y., Kudela Karel, Galkin Vladimir I., Gamma-Ray and High-Energy-Neutron Measurements on CORONAS-F during the Solar Flare of 28 October 2003, Solar Physics, Volume 268, Issue 1, pp.175-193, 01/2011 2. Kronberg E. A., Bučík R., Haaland S., Klecker B., Keika K., Desai M. I., Daly P. W., Yamauchi M., Gómez-Herrero R., Lui A. T. Y., On the origin of the energetic ion events measured upstream of the Earth's bow shock by STEREO, Cluster, and Geotail, Journal of Geophysical Research, Volume 116, Issue A2, CiteID A02210, 02/2011 3. Pope S. A., Zhang T. L., Balikhin M. A., Delva M., Hvizdos L., Kudela K., Dimmock A. P., Exploring planetary magnetic environments using magnetically unclean spacecraft: a systems approach to VEX MAG data analysis Annales Geophysicae, Volume 29, Issue 4, 2011, pp.639-647, 04/2011 4. Lazutin L. L., Muraveva E. A., Kudela K., Slivka, M., Verification of magnetic field models based on measurements of solar cosmic ray protons in the magnetosphere, Geomagnetism and Aeronomy, Volume 51, Issue 2, pp.198-209, 04/2011 5. Firoz K. A., Moon Y.-J., Cho K.-S., Hwang J., Park Y. D., Kudela K., Dorman, L. I., On the relationship between ground level enhancement and solar flare, Journal of Geophysical Research, Volume 116, Issue A4, CiteID A04101, 04/2011 6. Sabbah I., Kudela K., Third harmonic of the 27 day periodicity of galactic cosmic rays: Coupling with interplanetary parameters, Journal of Geophysical Research, Volume 116, Issue A4, CiteID A04103, 04/2011

Publikácie (CC) 7. Kollár V., Kudela K., Minarovjech, M., Some alternative instrumentation for galactic cosmic rays measurement using ground based neutron monitor detectors. I. Elapsed time methods, Contributions of the Astronomical Observatory Skalnaté Pleso, vol. 41, no. 1, p. 5-14., 05/2011 8. Jansen Frank, Behrens Jörg, Pospisil Stanislav, Kudela Karel, Space situational awareness satellites and ground based radiation counting and imaging detector technology, Nuclear Instruments and Methods in Physics Research Section A, Volume 633, p. S231-S234., 05/2011 9. Mavromichalaki H., Papaioannou A., Plainaki C., Sarlanis C., Souvatzoglou G., Gerontidou M., Papailiou M., Eroshenko E., Belov A., Yanke V., Flückiger E. O., Bütikofer R., Parisi M., Storini M., Klein K.-L., Fuller N., Steigies C. T., Rother O. M., Heber B., Wimmer-Schweingruber R. F., Kudela K., Strharsky I., Langer R., Usoskin I., Ibragimov A., Chilingaryan A., Hovsepyan G., Reymers A., Yeghikyan A., Kryakunova O., Dryn E., Nikolayevskiy N., Dorman L., Pustilnik L., Applications and usage of the real-time Neutron Monitor Database, Advances in Space Research, Volume 47, Issue 12, p. 2210-2222., 06/2011 10. Bučík R., Mall U., Korth A., Mason G. M., STEREO observations of the energetic ions in tilted corotating interaction regions, Journal of Geophysical Research, Volume 116, Issue A6, CiteID A06103, 06/2011 11. Bobik P., Boschini M. J., Consolandi C., Della Torre S., Gervasi M., Grandi D., Kudela K., Pensotti, S., Rancoita, P. G., Antiproton modulation in the Heliosphere and AMS-02 antiproton over proton ratio prediction, Astrophysics and Space Sciences Transactions, Volume 7, Issue 3, 2011, pp.245-249, 07/2011 12. Papailiou M., Mavromichalaki H., Kudela K., Stetiarova J., Dimitrova S., Giannaropoulou E., The effect of cosmic ray intensity variations and geomagnetic disturbances on the physiological state of aviators, Astrophysics and Space Sciences Transactions, Volume 7, Issue 3, 2011, pp.373-377, 09/2011

Publikácie (CC) Celkovo 16 CC publikácií Prijaté / v tlači Zaslané 13. Papailiou M., Mavromichalaki H., Kudela K., Stetiarova J., Dimitrova S., Effect of geomagnetic disturbances on physiological parameters: An investigation on aviators, Advances in Space Research, Volume 48, Issue 9, p. 1545-1550., 11/2011 14. Kudela Karel, Lazutin Leonid L., Selected Solar Influences on the Magnetosphere: Information from Cosmic Rays, The Sun, the Solar Wind, and the Heliosphere, by M.P. Miralles and J. Sánchez Almeida. Proceedings of the conference held 23-30 August, 2009 in Sopron, Hungary. IAGA Special Sopron Book Series, Vol. 4. Berlin: Springer, 2011. ISBN: 978-90-481-9786-6, p.199, 2011 15. Papailiou Maria-Christina, Mavromichalaki Helen, Kudela Karel, Štetiarová Jana, Dimitrova Svetla, Effect of geomagnetic disturbances on physiological parameters: An Investigation on aviators. In Advances in Space Research, 2011, vol. 48, no. 9, p. 1545-1550, 2011 16. Kazi A. Firoz, Y. J. Moon , H. Park, K. Kudela, N. Islam I., On the possible mechanisms of two GLE events, accepted in The Astrophys. Journal., vol. 743, 190, 2011 Celkovo 16 CC publikácií Prijaté / v tlači P. Bobik, G. Boella, M.J. Boschini, C. Consolandi, S. Della Torre, M. Gervasi, D. Grandi, K. Kudela, S. Pensotti, P.G. Rancoita and M. Tacconi, Systematic Investigation of Solar Modulation of Galactic Protons for Solar Cycle 23 using a Monte Carlo Approach with Particle Drift Effects and Latitudinal Dependence, accepted in The Astrophys. Journal., 2011 Zaslané P. Bobik, K. Kudela, B. Pastircak, A. Santangelo, M. Bertaina, K. Shinozaki, J. Szabelski, F. Fenu, J. Urbar, Distribution of secondary particles over Earth surface: effect of geomagnetic field, Advances in Space Research, október 2011

Kapitoly v knihách Kudela, K, and L.L. Lazutin, Selected Solar Influences on the Magnetosphere: Informations from Cosmic Rays, Chapter 18, p. 119-206, in The Sun, the Solar Wind, and the Heliosphere, Mari Paz Miralles and Jorge Sánchez Almeida Editors, IAGA Special Sopron Book Series 4, Springer, 2011. Prijatá pozvaná kapitola “On Variability of Low Energy Cosmic Rays”, INTECH publishing, do knihy Solar Wind, 30 pp. (proof), December 2011. Prijatá pozvaná kapitola Leonid Lazutin, Karel Kudela: The Space Object of Magnetoplasma: Magnetosphere of Earth, 34 pp.,  do knihy Medium: New Research, Október 2011, POPE, S.A. - ZHANG, T.L. - BALIKHIN, M.A. - DELVA, M. - HVIZDOŠ, L. - KUDELA, Karel - DIMMOCK, A.P. Exploring planetary magnetic environments using magnetically unclean spacecraft: a system approach to VEX MAG data analysis. In Annales Geophysicae, 2011, vol. 29, no. 4, p. 639-647, 2011

Konferencie Pozvanné prednášky K. Kudela, P. Bobik, 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications, Villa Olmo, Como, 3-7. October 2011 P. Bobik, B. Pastirčák, 9th International JEM-EUSO meeting, Paris, June 2011 P. Bobik, 10th International JEM-EUSO meeting, Wako, December 2011 Pozvanné prednášky K. Kudela, Energetic particles in space, cosmic rays and space weather: selected results and tasks. Invited talk on U. Athens, Greece, 10th Anniversary of Athens Neutron Monitor, March 10, 2011. K. Kudela, Energetic particles in space and cosmic rays in relation to selected problems of Space Weather, Space Weather And Plasma in Space, Qazrin, Israel, May 1 – 5, 2011, invited talk.

Ceny a vyznamenania Zlatá medaila SAV - Prof. Ing. K. Kudela, DrSc. Kapitoly v knihe: Feranec J. a kol., Slovensko očami satelitov, VEDA 2010, ocenené prémiou Literárneho fondu 2011

Experimenty / 2011 Lomnický štít - http://neutronmonitor.ta3.sk, tepelné neutróny, dozimetria na LŠ, pokračovanie NMDB MEP-2 pre SPEKTR-R (s SRI Moscow, DUT Xanthi GR) štart 18. júla 2011 RESONANCE (magnetosférické efekty s energetickými časticami, SRI Moscow, SINP MSU RU, DUT Xanthi GR) 2013 BepiColombo (misia k Merkúru, analýza plazmy, ESA, 2013) - prístroj PICAM/SERENA, časť ktorého časť vyvíja J. Baláž JEM-EUSO, zdroje UHECR, P. Bobik, K. Kudela, B. Pastirčák

Popularizácia Web: space.saske.sk/popul TV / tlač Hodina vedy - Quark - SME - Košický večer - atď. Hodina vedy Slovak Space Party

JEM-EUSO Kozmické Observatórium Extrémneho Vesmíru na palube Japonského Experimentálneho Modulu Projekt JAXA+ESA, 13 členských krajín Pôvod a zdroje UHECR

JEM-EUSO JEM-EUSO balón - stratosférický balón – 1 PDM, 2013 JEM-EUSO TA, 12/2012 JEM EUSO ISS - let v 2017 ?

JEM-EUSO Simulácia pozadia, odhalenie pravdepodobnosti „vzniku“ Participácia v aktivitách simulačnej skupiny JEM- EUSO Odhad operačnej efektívnosti experimentu Vplyv jednotlivých faktorov na dĺžku-efektívnosť merania detektora BG sources Duty cycle [%] BGmoon 21.43 BGmoon+ BG500 20.41 BGmoon+ BGcities 19.43 BGmoon+ BG500+ BGcities 18.51 - 3 články OKF (2009-2011), 2 konferenčné, 1 CC - približne 60 kolaboračných článkov (2009-2011) Simulácia pozadia, odhalenie pravdepodobnosti „vzniku“ falošného eventu. Optimalizácia trigger algoritmov.

UV background estimation – duty cycle estimation UV light sources - sun - moon - airglow/nightglow - zodiacal light - integrated faint star light - lightnings - Boreal/austral auroras - artificial sources This video over the Mediterranean Sea was taken by the crew of Expedition 29 aboard the International Space Station. This sequence of shots was taken on Oct. 6, 2011, from 22:58:09 to 23:13:15 GMT, on an ascending pass from just west of the Strait of Gibraltar, over the Atlantic Ocean to northern Kazakhstan. The first significant landmark is the Strait of Gibraltar, separating Spain and Morocco.

UV background estimation – duty cycle estimation UV light sources - sun - moon - airglow/nightglow - zodiacal light - integrated faint star light - lightnings - Boreal/austral auroras - artificial sources + night clouds Video over Southeastern Asia was taken by the crew of Expedition 29 aboard the International Space Station. This sequence of shots was taken on Oct. 7, 2011, from 12:41:10 to 12:50:46 GMT, on an ascending pass from the island of Java to the northeast of Japan. Clouds fill most of the sky until the island of Japan approaches near the end of the sequence. Tokyo is brightly visible on the eastern-most side of the island.

UV background estimation – duty cycle estimation UV light sources - sun - moon - airglow/nightglow - zodiacal light - integrated faint star light - lightnings - Boreal/austral auroras - artificial sources This video over the Sahara Desert and the Middle East was taken by the crew of Expedition 29 aboard the International Space Station. This sequence of shots was taken on Oct. 6, 2011, from 19:46:23 to 19:58:41 GMT, on an ascending pass from the Sahara Desert to western Kazakhstan. The rust color of the Sahara Desert is the first view in this video.

UV background estimation – duty cycle estimation UV light sources - sun - moon - airglow/nightglow - zodiacal light - integrated faint star light - lightnings - Boreal/austral auroras - artificial sources Video of the Aurora Australis taken by the crew of Expedition 29 on board the International Space Station. This sequence of shots was taken September 17, 2011 from 17:22:27 to 17:45:12 GMT, on an ascending pass from south of Madagascar to just north of Australia over the Indian Ocean..

Tatiana measurements archive http://space.saske.sk/JEM/tatiana.html Tatiana data: web site of the MSU-250 project: http://cosmos.msu.ru Measurements from January 2005 to March 2007 UV range: 300-400 nm To visualize Tatiana UV measurements and create reference frame for future use. Ak http://space.saske.sk - in internal JEM-EUSO part http://space.saske.sk/JEM. ~7000 measurements of Universitetsky Tatiana satellite at ~25 000 figures (two types of figures) Selection parameters - Sun zenith angle - Moon zenith angle - length of one continuous measurement

JEM-EUSO duty cycle estimation As the night for Tatiana orbit we consider simple cut on the zenith angle [3] by solar zenith angle higher than 119.5 deg.. The sun eclipse times are then defined using a simple cut on the zenith angle: Tatiana in the umbra θZ > π − arcsin(R / (R + H )) = 119.5° where R is the earth radius (6378 km) and H the Tatiana height above ground level (950 km). We apply the correction for UV intensity on Tatiana orbit to ISS orbit (~16.89% - the precise value depends on the exact Tatiana altitude) and the correction taking into account the difference between night definition for Tatiana orbit and ISS orbit. Figure shows a duty cycle evaluated from Tatiana data corrected to ISS orbit together with duty cycle evaluated for real ISS trajectory and simulated moonlight. Duty cycle evaluated from real ISS trajectory (solid line) in comparison with duty cycle from Tatiana data (dashed line).

JEM-EUSO duty cycle estimation The night definition by simple cut on the zenith angle could not be very precise approximation for JEM- EUSO measurements. It is possible that we will need to redefine night by shifting the Sun position 19.18 deg. under horizon as presented previously to a higher value. We have estimated a JEM-EUSO duty cycle for a set of solar zenith angles for allowed background of UV intensity less than 1500 photons/(m2 ns sr). The estimation from Tatiana measurements is presented in Table. The change of solar zenith angle limit from 108 to 120 degrees decreases the JEM-EUSO duty cycle by about 3.8%. Solar zenith angle (deg.) Duty cycle (%) 108 22.2 109 22.1 110 21.9 111 21.7 112 21.5 113 21.3 114 21.0 115 20.6 116 20.3 117 19.9 118 19.5 119 19.0 120 18.4

Defense Meteorological Satellite Program data Using DMSP (Defense Meteorological Satellite Program) database – Annual average of cloudfree moonless intensity of ‘Night Earth’ in 30 arcseconds grid on surface • Light pollution cities mainly consisting of visible range – Assuming UV intensity proportional to visible (data published for range 350 – 2000 nm in 63 levels scale) • Estimating background intensity in a unit of ‘oceanequivalent’ – ‘Oceanequivalent’ background intensity - assuming → 500 UVphotons / (m2 sr ns)

City lights examples / JEM EUSO aperture

Sodium lamp (orange light) Metal halide (green light) Mercury vapor Standard color camera images of Chicago, Tokyo and Hong Kong from the International Space Station Pettit, D. Cities at night: an orbital perspective. NASA Ask Magazine 2010 Sodium lamp (orange light) Metal halide (green light) Mercury vapor Spectral Identification of Lighting Type and Character, Christopher D. Elvidge, David M. Keith, Benjamin T. Tuttle and Kimberly E. Baugh, Vol. 10, p. 3961, Sensors 2010

FOV – overlapping of 1 minute trajectory steps on Earth Surface (example of ISS trajectory)

City lights effect - Operational efficiency - Summary BG500 = estimated oceanequivalent background (nightglow, zodiacal light, integrated faint star light) = 500 ph/(m2 sr ns) Influence/effect of BGcities - city is identified by DSMP satellite measurements - when one city appear in PDM then -> PDM is blind - strict condition? FOV is divided to 137 areas (PDM) on Earth surface and scan along ISS trajectory for cities. Influence/effect of BGX00 - effect of different levels of oceanequivalent BG i.e. 300, 400, 500, 600, 700 ph/(m2 sr ns) – is ~0,2% per Δ BG = 100 ph/(m2 sr ns) BG sources Duty cycle [%] BGmoon 21.43 BGmoon+ BG500 20.41 BGmoon+ BGcities 19.43 BGmoon+ BG500+ BGcities 18.51 ? Where we are blind – red circles Really?

City lights effect - Operational efficiency – Como article 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications, Villa Olmo, Como 3-7 October 2011 - http://villaolmo.mib.infn.it Estimation of JEM-EUSO experiment OBSERVATION EFFICIENCY Deconvolution of effects ... in Conclusion “... at present stage, 1 bright pixel in the PDM is blinding the entire PDM. If the 1st trigger level could work at EC level (9 elementary cells in PDM), we could gain ~1% (from 18.51% back to 19%) in operational duty cycle.”

JEM-EUSO – secondary particles distribution

Outline of noise reduction capability. Úlohou triggra je detekovať výskyt signálu od reálneho eventu spomedzi extrémne vysokého pozadia ( ~ 10^11 cts/s/FS) Signál postupne filtrovaný na viacerých úrovniach redukujúc trigger rate Schéma triggra zodpovedá segmentovaniu FS (Focal Surface) na moduly PDM (Photo Detector Module), ktoré sú dostatočne rozsiahle na to, aby obsiahli podstatnú časť zobrazenia skúmaného 'treku' Outline of noise reduction capability. Level Rate of signals/triggers at PDM level Rate of signals/triggers at FS level PDM level trigger Photon trigger ~9.2 × 108 Hz ~1.4 × 1011 Hz Counting trigger ~7.1 × 105 Hz ~1.1 × 108 Hz Persistency track trigger (PTT) ~7 Hz ~103 Hz PDM cluster level trigger (FS=144 PDM's) Linear track trigger (LTT) ~6.7 × 10-4 Hz ~0.1 Hz Expected rate of cosmic ray events ~6.7 × 10-6 Hz ~10-3 Hz

Motivácia a simulačný kód Veľmi vysoká úroveň očakávaného pozadia vyžaduje simuláciu obrovského počtu prípadov, aby sa dosiahla spoľahlivá filtrácia bg prípadov Vyvinutý a použitý rýchly C++ kód: - rozdelenie počtu fotoelektrónov pozadia sa riadi Poissonovým rozdelením (str. hodnota BG 500 ph/(m2 s sr) resp. 2.1 ph/pix/GTU) - PDM = 6x6 pixlov - PTT algorithm 1 Hz/PDM - LTT algorithm 1mHz/PDM Kód je rýchly, ale potrebné vyprodukovať obrovskú štatistiku -> nutné paralelné počítanie Všetko počítané na našom (OKF) PC klastri v Košiciach Dosiahnuť minimálnu potrebnú úroveň štatistiky možno pri roku nepretržitého počítania Ukladané dáta o prípadov, ktoré prešli úrovňami PTT aj LTT filtrácie Tieto analyzované pattern recognition

Poďakovanie BALÁŽ Ján BOBÍK Pavol BUČÍK Radoslav KOLLÁR Vladimír KUDELA Karel LANGER Ronald PASTIRČÁK Blahoslav SLIVKA Marián STRHÁRSKÝ Igor ŠTETIAROVÁ Jana ŠTEFÁNIK Samuel TOMIČOVÁ Anna 6 vedeckí pracovníci 4 odborní VŠ pracovníci 2 odborní pracovníci 1 interný phd študent 1 externá phd študentka