1.

Slides:



Advertisements
Similar presentations
Erdem Oz* USC E-164X,E167 Collaboration Plasma Dark Current in Self-Ionized Plasma Wake Field Accelerators
Advertisements

Design and Experimental Considerations for Multi-stage Laser Driven Particle Accelerator at 1μm Driving Wavelength Y.Y. Lin( 林元堯), A.C. Chiang (蔣安忠), Y.C.
Slab-Symmetric Dielectric- Based Accelerator Rodney Yoder UCLA PBPL / Manhattan College DoE Program Review UCLA, May 2004.
A Resonant, THz Slab- Symmetric Dielectric-Based Accelerator R. B. Yoder and J. B. Rosenzweig Neptune Lab, UCLA ICFA Advanced Accelerator Workshop Sardinia,
Wakefield Acceleration in Dielectric Structures J.B. Rosenzweig UCLA Dept. of Physics and Astronomy The Physics and Applications of High Brightness Electron.
Particle-Driven Plasma Wakefield Acceleration James Holloway University College London, London, UK PhD Supervisors: Professor Matthew wing University College.
Developing photonic technologies for dielectric laser accelerators
Adnan Doyuran a, Joel England a, Chan Joshi b, Pietro Musumeci a, James Rosenzweig a, Sergei Tochitsky b, Gil Travish a, Oliver Williams a
Advanced and Future Accelerator Techniques Is There Life in HEP? E. Colby Stanford Linear Accelerator Center Accelerator Research Department B SLUO Annual.
Lecture 3: Laser Wake Field Acceleration (LWFA)
Accelerator Physics  Basic Formalism  Linear Accelerators  Circular Accelerators  Magnets  Beam Optics  Our Accelerator Greg LeBlanc Lead Accelerator.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
RF particle acceleration Kyrre N. Sjøbæk * FYS 4550 / FYS 9550 – Experimental high energy physics University of Oslo, 26/9/2013 *k.n.sjobak(at)fys.uio.no.
The LHC: an Accelerated Overview Jonathan Walsh May 2, 2006.
Measurements of accelerator beam spectrum by means of Cherenkov radiation intensity dependence on phase velocity of electromagnetic waves in optical and.
March 2011Particle and Nuclear Physics,1 Experimental tools accelerators particle interactions with matter detectors.
Tools for Nuclear & Particle Physics Experimental Background.
Dielectric Wakefield Accelerator for an X-ray FEL User Facility
IRPSS: A Green’s Function Approach to Modeling Photoinjectors Mark Hess Indiana University Cyclotron Facility & Physics Department *Supported by NSF and.
Free Electron Lasers (I)
RF Cavity Design with Superfish
and Accelerator Physics
Status of the PSB impedance model C. Zannini and G. Rumolo Thanks to: E. Benedetto, N. Biancacci, E. Métral, N. Mounet, T. Rijoff, B. Salvant.
Max Zolotorev AFRD LBNL 1 Max Zolotorev CBP AFRD LBNL Radiation & Acceleration Tutorial.
Updated status of the PSB impedance model C. Zannini and G. Rumolo Thanks to: E. Benedetto, N. Biancacci, E. Métral, B. Mikulec, N. Mounet, T. Rijoff,
Electron Source Configuration Axel Brachmann - SLAC - Jan , KEK GDE meeting International Linear Collider at Stanford Linear Accelerator Center.
INVESTIGATIONS OF MULTI-BUNCH DIELECTRIC WAKE-FIELD ACCELERATION CONCEPT National Scientific Center «Kharkov Institute of Physics and Technology» Kharkov,
PBG Structure Experiments, AAC 2008 Photonic Bandgap Accelerator Experiments Roark A. Marsh, Michael A. Shapiro, Richard J. Temkin Massachusetts Institute.
Collimator wakefields - G.Kurevlev Manchester 1 Collimator wake-fields Wake fields in collimators General information Types of wake potentials.
Module 5 A quick overview of beam dynamics in linear accelerators
May 5, 2011 Fermilab Daniel Mihalcea Northern Illinois University Department of Physics High Gradient Wakefield Acceleration in Dielectric-Loaded Structures.
ICFA Workshop on Novel Concepts for Linear Accelerators and Colliders. SLAC, July Euclid Techlabs LLC DIELECTRIC BASED HG STRUCTURES: POWER EXTRACTION,
Round-to-Flat Beam Transformation and Applications Yine Sun Accelerator System Division Advanced Photon Source Argonne Nation Lab. International Workshop.
People Xavier Stragier Marnix van der Wiel (AccTec) Willem op ‘t Root Jom Luiten Walter van Dijk Seth Brussaard Walter Knulst (TUDelft) Fred Kiewiet Eddy.
Erik Adli CLIC Project Meeting, CERN, CH 1 Erik Adli Department of Physics, University of Oslo, Norway Input from: Steffen Doebert, Wilfried Farabolini,
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Transverse Gradient Undulator and its applications to Plasma-Accelerator Based FELs Zhirong Huang (SLAC) Introduction TGU concept, theory, technology Soft.
2 February 8th - 10th, 2016 TWIICE 2 Workshop Instability studies in the CLIC Damping Rings including radiation damping A.Passarelli, H.Bartosik, O.Boine-Fankenheim,
Prospects for generating high brightness and low energy spread electron beams through self-injection schemes Xinlu Xu*, Fei Li, Peicheng Yu, Wei Lu, Warren.
Round-to-Flat Beam Transformation and Applications
Progress in unconventional RF structures Dr Graeme Burt Cockcroft Institute, Security Lancaster, Lancaster University.
Helical Accelerating Structure with Controllable Beam Emittance S.V. Kuzikov 1, A.A. Vikharev 1, J.L. Hirshfield 2,3 1 Institute of Applied Physics RAS,
Ionization Injection E. Öz Max Planck Institute Für Physik.
X-band Based FEL proposal
Wir schaffen Wissen – heute für morgen PSI, March 2013 Paul Scherrer Institut PSI / DESY / KIT Mini-Workshop on Longitudinal Diagnostics for FELs.
The Design and Effects on the Electron Beam of the International Linear Collider Positron Source Helical Undulator Duncan Scott Magnetics and Radiation.
Coherent THz radiation source driven by pre-bunched electron beam
Bunch Shaping for Future Dielectric Wakefield Accelerators W. Gai Mini-Workshop on Deflecting/Crabbing RF Cavity Research and application in Accelerators.
1.
How does a klystron work? TE-MPE Section Meeting Karolina Kulesz
Present and possible future schemes for hadron therapy linacs Alberto Degiovanni for the ADAM team HG2017 Workshop , Valencia.
The 2nd European Advanced Accelerator Concepts Workshop
Laboratoire d’Optique Appliquée
Stefano Romeo on behalf of SPARC_LAB collaboration
Tunable Electron Bunch Train Generation at Tsinghua University
Electron cloud and collective effects in the FCC-ee Interaction Region
Wakefield Accelerator
Few Slides from RF Deflector Developments and Applications at SLAC
ERL Main-Linac Cryomodule
Using a Bessel Light Beam as an Ultra-short Period Helical Undulator
Electron Source Configuration
Polarized Positrons at Jefferson Lab
ERL accelerator review. Parameters for a Compton source
Jefferson Lab Student Seminar Series
LCLS bunch length monitor utilizing coherent radiation
Compact linear accelerator FLUTE: status update
Electron sources for FCC-ee
Explanation of the Basic Principles and Goals
MEBT1&2 design study for C-ADS
小型X線源の性能確認実験計画 高輝度・RF電子銃研究会 広島大学 高エネルギー加速器研究機構 浦川順治
Presentation transcript:

1

2

3

4

History of Electron Accelerators: Livingston Plot Rasmus Ischebeck 5

Applications of Accelerators Rasmus Ischebeck

How to Accelerate Charged Particles Assume: an ultrarelativistic particle of charge e moving along the z axis accelerated by a plane electromagnetic wave that propagates at an angle ϑ to the z axis k ϑ e- λ Rasmus Ischebeck

How to Accelerate Charged Particles Then: Position of the electron k ϑ e- λ Electric field Energy gradient Rasmus Ischebeck

Lawson Woodward Theorem Every wave in far field can be written as a superposition of plane waves The Lawson-Woodward Theorem states: the total acceleration of ultrarelativistic particles by far-field electromagnetic waves is zero Need near-field structures electron Woodward, J. IEE 93 (1947) Lawson, IEEE Trans. Nucl. Sci. 26 (1979) Palmer, Part. Accel. 11 (1980) electromagnetic wave Rasmus Ischebeck

RF Acceleration RF Acceleration electrical field Cu Using a resonant cavity at radio frequencies (RF) (∼GHz) Electromagnetic field provided by external source (e.g. klystron) electron Resonating RF Cavity Travelling Wave Structure 11.4 GHz 2π/3 Mode Eacc ≥ 50 MV/m Rasmus Ischebeck

Limits to the Accelerating Field Normal-conducting accelerators Breakdown on the surface Superconducting accelerators Critical magnetic field http://hyperphysics.phy-astr.gsu.edu/hbase/solids/scbc.html Rasmus Ischebeck

Possibilities for Accelerating Structures max. Field (V/m) Structure Power Sources electron beams: klystrons electron beams: klystrons or integrated structure Superconducting 5·107 solid state Metallic 2·108 solid state Dielectric 109 laser electron beams Plasma ≥1011 laser electron beams Plus: Inverse FEL, disposable structures, excited atoms, muon colliders Rasmus Ischebeck

> Transformation of far-field into accelerating field Metallic Structures > Transformation of far-field into accelerating field Rasmus Ischebeck

Laser-Based Acceleration Rasmus Ischebeck Laser-Based Acceleration

Laser Acceleration (1961) Koichi Shimoda, Applied Optics 1 (1), 33 (1961) Rasmus Ischebeck 15

Laser as a source of electromagnetic fields 1.  Smaller/less expensive than RF. 2.  Energy efficient (near 50%). 3.  High repetition rate (1 to 100 MHz). 4.  Large electric fields (GV/m). Solid-state laser RF Klystron Rasmus Ischebeck Bob Byer 16

Dielectric Accelerator Structures > Using much higher frequencies: THz to optical > Using dielectrics (e.g. SiO2) > Advantages: higher damage threshold Higher accelerating fields, up to ~GV/m > Generate the electromagnetic field > Cherenkov radiation from an electron beam > Laser > Confine the field > Photonic band gap 8 Rasmus Ischebeck 17

Planar Structures Elliptical Pillars Rectangular Pillars Laser Rectangular Pillars Laser Double Slab Grating Laser e- e- e- Laser Laser Buried Grating Laser Asymmetric Grating Reverse Slab Grating Laser e- e- e- Laser Laser Laser Rasmus Ischebeck Ken Leedle 18

Planar Structures: Measurements Rasmus Ischebeck Joel England 19

Circular Structures > Experiment at MIT Franz Kärtner Rasmus Ischebeck Franz Kärtner

> Structure geometry: Circular Structures > Structure geometry: electron beam E metal dielectric d a Rasmus Ischebeck Franz Kärtner

Circular Structures: Modeling > Analytical solution for the electromagnetic fields: 8 > 1 0 1 E J (r r)e i(kz-!t) , r < a < > E = ✓ ◆ z > J (r b) : > ei(kz-!t), E J0(r2r) - 0 2 Y0(r2r) a < r < b 2 Y0(r2b) 8 > > k i E J (r r)e i(kz-!t) , r < a > > < r 1 1 1 Er = > ✓ ◆ > > k J (r b) > i E J (r r) - : 0 2 Y (r r) e i(kz-!t) , a < r < b r2 2 2 Y0(r2b) 2 8 ! >i > E J (r r)e i(kz-!t) , r < a > < r c 2 1 1 1 B< = ✓ ◆ > > > ! J (r b) : i ✏ E J (r r) - 0 2 Y (r r) e i(kz-!t) , a < r < b r2c2 r 2 2 Y0(r2b) 2 Rasmus Ischebeck Max Kellermeier

Tool to Calculate Beam Propagation Rasmus Ischebeck Max Kellermeier

Circular Structures: Measurements 1 Measured Modeled Measured Modeled 0.8 Counts (Arb.) 0.6 0.4 0.2 45 50 55 60 65 70 Energy (keV) (a) 45 50 55 60 65 Energy (keV) (b) 70 75 Figure 4: Measured (black) and modeled (red) energy spec- trum with THz (a) off and (b) on at a gun voltage of 59 kV. Rasmus Ischebeck Nanni et al., Proceedings of IPAC 2014 24

Towards 3-Dimensional Structures: Photonic Crystals periodic electromagnetic media 1887 1987 1-D 2-D 3-D periodic in one direction periodic in two directions periodic in three directions (need a more complex with photonic band gaps: “optical insulators” topology) Steven G. Johnson 9 Rasmus Ischebeck 25

Photonic Band Gap Structures 12 Rasmus Ischebeck Chris Sramek 26

Installation of a Test Chamber in SwissFEL Rasmus Ischebeck

Planned Experimental Setup in SwissFEL > Goal: Acceleration by 1 MeV Laser Profile monitor Quadrupole magnets Electron beam from SwissFEL Accelerating structure Magnetic spectrometer Paraboloid mirror Rasmus Ischebeck

Focusing of the Electron Beam 90 80 70 60 50 40 30 20 10 x y β-function (m) 2 4 6 8 10 s [m] 12 14 16 18 2 4 6 8 10 12 14 16 18 Rasmus Ischebeck Eduard Prat 29

Design of Interaction Chamber > Design in progress… Rasmus Ischebeck Adriano Zandonella, Goran Kotrle, Eugenio Ferrari 30

Plasma Wakefield Acceleration

> Linear plasma wake: Plasma Wakes - Theory > Unlike electromagnetic waves in vacuum, plasma wakes can have a longitudinal electric field – – + – – + + + – + + + + + – + + – – + – – – + – – + – – + + – – – – + + + – – – + – + – + – – + + > – Tajima & Dawson, PRL, 43, 267(1979) – + – – + + – – – + – + + + – – – + – + – + + – + – + – – + + – – + – + + + + + – + – – – + + + – –– – + + + + – + – + – – E E E E E E > Linear plasma wake: > Limit: Rasmus Ischebeck 32

> Above this limit: non-linear wakes, “Blow-out regime” Plasma Wakes - Theory > Above this limit: non-linear wakes, “Blow-out regime” > Fields can be calculated only with numerical methods > Typical wavelength: 50 µm > Accelerating fields up to 50 GV/m Rasmus Ischebeck Miaomiao Zhou 33

Plasma Wakes - Reality Rasmus Ischebeck 34

> Incoming energy: 42 GeV > Peak energy: 85±7 GeV Energy Doubling > Plasma length: 85 cm > Density: 2.7•1023 m−3 > Incoming energy: 42 GeV > Peak energy: 85±7 GeV Rasmus Ischebeck 35

Measurement of Electromagnetic Fields Rasmus Ischebeck

Measured Electromagnetic Fields Rasmus Ischebeck

Recent Experiments at PSI Rasmus Ischebeck

Generation of a Density Ramp Blade 1.1mm Rasmus Ischebeck

Charge Measurement Rasmus Ischebeck Andreas Adelmann, Nick Sauerwein, Benedikt Herrmann 40

Livingston Plot 44 Rasmus Ischebeck 41

An Unfair Comparison 44 Rasmus Ischebeck 42

From Accelerating Fields to Accelerators There is More to Accelerating Structures than the Accelerating Field >Power sources >Beam loading >Emittance preservation > Non-linear transverse forces > Wakefields There is Much More to an Accelerator than Accelerating Structures >Particle sources (injectors) >Bend magnets for storage rings >Focusing, beam dynamics >Detectors Rasmus Ischebeck 43

Instrumentation and Acceleration Research at PSI > Special Thanks to: Adriano Zandonella Andreas Adelmann Benedikt Herrmann Bob Byer Chris Sramek Eduard Prat Eugenio Ferrari Franz Kärtner Goran Kotrle Joel England Ken Leedle Malte Kaluza Max Kellermeier Miaomiao Zhou Nick Sauerwein > This presentation is available at http://ischebeck.net © 2017 Paul Scherrer Institut Rasmus Ischebeck 44